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ABSTRACT

In the change management context, handling web service evolution is a challenging issue that aims 
to adapt deployed business processes to the perpetual changes occurring in enterprises environments. 
While existing approaches deal with the problem by focusing only on migratable instances, in this 
approach the authors propose a paradigm shift based on reconfigurable objects nets (RONs) to allow 
running service instances continuing their execution according to the evolved protocol specifications. In 
this approach, service protocols are modelled as petri nets, and changes are perceived as transformation 
rules. Further, reachability graphs are deployed for calculating migratable services instances after 
evolution. The conceived framework allows migrating active instances from the old protocol version 
to the evolved one. Web service protocol compatibility and replaceability aspects are addressed to 
distinguish migratable services instances from non-migratable ones. The authors illustrate their 
contribution and highlight advantages of using RONs through a real-world scenario related to the 
visa application service.

Keywords
Business Protocols, Dynamic Protocol Evolution, Instances Migration, Reconfigurable Object Nets, 
Reconfigurable Petri Nets, Service Instances, Web Services

INTRODUCTION AND PROBLEM STATEMENT

Business processes constitute the cornerstone of modern organizations. Thus, companies invest 
huge efforts and sums for managing the associated life cycles while modeling and maintaining their 
processes schemes. Meanwhile, as a revolutionary technique in the software industry, Web services 
are becoming the new generation of software components allowing the implementation of various 
kinds of business processes. In fact, Web services technology is suitable for supporting the integration 
of distributed and heterogeneous information systems.
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Two elements are fundamental to enhancing the interactivity level between the different 
stakeholders involved in Web services environments. First, the service interface describes static 
elements useful for invoking the available operations, like messages, types, port types, and the 
required protocol. However, as service operations cannot be invoked in an aleatory fashion, the 
service protocol represents an abstract tool to specify the operations sequences imposed by the service 
provider according to his business logic. In a nutshell, a service protocol is an abstract model which 
handles the sequence of messages that a service and its clients exchange to achieve a certain business 
goal (Alonso et al., 2004; Ryu et al., 2008; Benatallah et al., 2006). In this perspective, the research 
literature has highlighted the usefulness of service protocols, and various models performing different 
expressivity and relevance levels have been suggested to handle different types of constraints.

Nowadays, contemporary enterprises evolve in a turbulent environment from which they recover 
information related to customer needs, partners, and competitors, and for which they produce consumer 
goods for clients and other companies. Indeed, due to the phenomenon of economic globalization 
and as a consequence of advances in information and communication technology (ICT), the market 
has become global, and competition is increasingly hard. Consequently, enterprises must face a high 
level of dynamicity where evolutions become intrinsic aspects of such competitive environments. The 
development of modern corporations leads to their transformation into open systems that have close 
connections with a highly unexpected and unstable environment; in return, their survival is dependent 
on them. Many reasons, such as changes in the business logic or business strategies, the evolution of 
laws and regulations, and adaption needs, can lead to changes in the already deployed Web services 
specifications. Business protocol evolution involves updating an old protocol description, e.g., adding or 
removing activities or steps in the current procedure to comply with new business requirements (Khebizi 
et al., 2017). In this context, a crucial issue lies in the management of active instances having started 
their interactions based on the old service protocol version. In fact, stopping a system while execution 
instances are still running may involve a loss of historical work that has been accomplished. Therefore, 
the ability to ensure the system’s continuation without stopping it should be an option. However, the 
problem is the management of the ongoing instances having started according to the previous protocol 
when it has been modified. To address such issues, a thorough analysis of active instances that need 
to comply with the business modifications is required. Hence, defining a seamless migration strategy 
must focus on two complementary aspects: the business protocol specification and the progression level 
of instances to be migrated to the new protocol (Khebizi et al., 2017). Ryu et al. (2008) proposed three 
migration strategies: continuation, migration to the new protocol, and migration to ad hoc protocol. 
Figure 1 illustrates the scenario of business protocol evolution and its challenging issues.

To face the challenge of managing dynamic business protocol evolution, high-level modeling 
techniques and formal methods are very useful for establishing a solid theoretical foundation that 
will facilitate the management of the problem in an adequate and formal fashion. Thus, the main 
goal of this work consists of focusing on abstract Web service specifications by using formal and 
abstract tools in order to address the problem of dynamic Web services evolution and to examine 
entailed impacts of change management. Among the panoply of abstract models that have proven their 
strength, soundness, and validity in various research areas, Petri nets are the most widespread ones 
in the field of dynamic and real time-systems. The Petri net formalism is intensively used to model, 
analyze, simulate, control, and evaluate the behavior of distributed and concurrent systems (Murata, 
1989). Nonetheless, it is observed that basic Petri nets do not provide a direct method for handling 
difficulties induced by dynamic changes in systems. To overcome this limitation, this formalism was 
enhanced with enriched extensions allowing a formalization of different features.

In fact, the extension of basic Petri nets to reconfigurable Petri nets (RONs for short) was inspired 
by the evolution in software and hardware systems advances in the trend to manage dynamic systems 
changes. This improvement replaces the structures of classical systems from rigorous to flexible, 
open, and dynamic ones (Padberg & Kahloul, 2018). Reconfigurable Petri nets provide a soundness 
dimension to classical Petri nets that make the discrimination between the levels of change possible 



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

3

due to the integration of a set of rules that can change the Petri nets (Padberg & Kahloul, 2018). 
Consequently, we are convinced that such formalism is a natural, effective, and suitable tool for 
handling dynamic business protocol evolution.

Dynamic change management of Web service business protocols is a major issue to be tackled in 
order to strive for rapid reconfiguration of business processes to adapt to a new and rapidly changing 
environment. Hence, in this work, we aim to ensure Web service instances execution continuation 
according to the new protocol specifications imposed by changes occurring in enterprise environments. 
To this end, we develop a formal technique that, on the one hand, enables the modeling of evolving 
processes as RONs, and on the other hand, supports changes by deploying transformation rules 
reflecting new specifications of processes. The main idea behind using RONs is the integration of 
transition firing and rule-based net structure transformation of place–transition (PT) nets during the 
evolution of Web services protocols. This can be achieved by the appropriate integration of token-
nets and token-rules in a high-level net model. The conceived framework allows migrating a large 
spectre of active instances of the current service protocol. In fact, instead of considering running 
instances in a systematic manner as migratable and not migratable ones, we force them to adapt to 
the new requirements dictated by environment changes. The main benefits of this perception consist 
of guaranteeing a maximum rate of migratable instances and avoiding loss of work induced by the 
recovery from scratch of non-compatible instances.

The suggested method represents a new mechanism for tackling the issue of instance continuation 
in the business protocol evolution context. We propose a paradigm shift based on reconfigurable 
object nets (RONs). Based on such formal and sound tools, the conceived framework offers to 
protocol managers the possibility to continue the execution of ongoing instances according to the 
evolved protocol specifications. Whilst existing approaches for dynamic protocol changes impose 
active instances to be compatible as accurately as possible with the initial service protocol, our 
approach allows all active instances to be migrated by deploying the reachability graph that allows 
service providers the ability to manage the constraints that drive the instances migration process. 
Our contribution covers the following aspects:

•	 A formal verification of compliance criteria in order to ensure that instances migration does not suffer 
from problems such as deadlocks, activities re-executions, or deletion of already started activities.

•	 A maximum coverage of instances to be migrated by exploiting the reachability graph.
•	 An operational and actionable framework for managing instances migration that exceeds 

unsuccessful abstract and theoretical approaches.

Figure 1. 
The challenge of managing dynamic business protocol evolution
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Subsequently, the proposed approach adds value to the area of business protocol evolution. In fact, 
when building and deploying the reachability graph of a Petri net model, properties of the modeled 
system are performed through the marking paths from the initial marking to the target one. In this 
perspective, the constructed reachability graph is exploited to calculate compatible conversations 
that can be migrated to the new business protocol. Notably, in most of the existing approaches in 
the literature, services’ active instances are managed and supported by users’ predefined migration 
strategies (e.g., black and white), taking into account neither specific user needs nor complex migration 
strategies. To illustrate the applicability and feasibility of our approach, various RONs are manipulated 
in the paper, and the usage of the most suitable one for a specific evolution context is illustrated with 
real examples. Our suggestion for managing changes and handling protocols evolution operates in 
an incremental fashion.

First, we consider old and new service protocols as graphs, and we use graph transformation 
techniques and tools to model these protocols as Petri nets. Then, we make various changes to the 
initial service protocol (e.g., adding or removing activities by operating the adequate changes to the 
initial service protocol specification). At this stage, the formal model of RONs plays a crucial role, 
and the RON-Editor is deployed to simulate the business protocol evolution. This goal is reached 
by considering two dimensions of RONs, the system level and the token level, and their associated 
types of tokens: token-nets and token-rules. In the formal RONs model, token-nets are PT nets, while 
token-rules are double pushout production rules.

Once changes are performed and modeled with RONs elements (token-nets and token-rules), 
compatibility properties are taken into account as a discriminator factor to handle instances migration. 
Hence, the concept of the reachability graph of the RONs is exploited to calculate the active instances 
able to migrate to the evolved business protocol. Accordingly, to the work of (Ryu et al., 2007), in 
our approach, we classify active instances into two kinds, i.e., migratable and non-migratable ones, 
and we handle non-migratable instances by applying ad hoc protocols techniques. To achieve this 
goal, double-pushout rules are used to realize a protocol adapter that handles the mismatches and 
bridges the gap between old and new protocol versions. A real-world scenario (i.e., the Australian 
working visa application service) of a Web service business protocol is used throughout this paper to 
illustrate the proposed approach and to highlight the different facets supporting the formal concepts.

The remainder of this paper is organized as follows. After a literature review of the change 
management and evolution problem, we present materials and methods used in this work. The 
following section is dedicated to the results of managing changes by deploying RONs, and we 
present an instances classification technique (migratable, non-migratable) and study the problem of 
the non-migratable instances; this is followed by a discussion of our results. Finally, the conclusion 
and potential perspectives of our work are drawn.

LITERATURE REVIEW

The problem of evolution management has been tackled from different aspects in a panoply of 
research works. In fact, there have been various proposals regarding systematic approaches in many 
research areas on data and software engineering to ensure more flexibility to information system, 
as well as managing dynamic changes. In the business processes field, impacts of evolution have 
been approached from perspectives such as the improvement of business process reconfiguration 
and process instances migration. The application of changes to a certain service protocol, which is 
recognized as the dynamic evolution problem in Web services environments, was addressed based 
on three levels: the interface level, the business protocol level, and the instances level. The last two 
are important in dynamic service evolution and instance migration management. Hence, in what 
follows, we mainly focus on these aspects.

On the one hand, an important number of research works highlighted the subject of Web 
services business protocols evolution (Azough et al., 2009; Benatallah et al., 2005; Liske et al., 2009; 
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Papazoglou, 2008; Ryu et al., 2007, 2008; Skogsrud et al., 2007; Y. Wang & Y. Wang, 2013). On 
the other hand, another attempt to investigate the instance migration during protocol evolution by Y. 
(Wang & Y. Wang, 2013) implemented a business protocol model based on a finite state machine. In 
comparison, the automatic identification of migratable instances is achieved by the implementation of 
model-based techniques. This approach identifies the instances that are unaffected by the changes and 
easily migratable to the new protocol, while keeping the transparency of their migration to the evolved 
version. The main focus here is the deployment of the compatibility and replaceability (Benatallah 
et al., 2006) that are inevitable to safely identify migratable instances during the evolution of the 
protocol scheme. These notions are used to conduct a close analysis of protocol evolutions impacts.

By using forward and backward compatibility principles, various compatibilities classes were 
distinguished by Azough et al. (2009) and Liske et al. (2009) to specify the kinds of service instances 
migration. Comparatively, the asynchronous and non-deterministic service protocols evolution 
(Liske et al., 2009) extends the set of techniques used by Ryu et al. (2008); while Papazoglou (2008) 
introduced shallow changes that are confined to either services or clients. However, deep changes 
are changes where cascading effects and side effects take place.

In case a proper migration of active instances is not possible, adaptation techniques (Benatallah 
et al., 2005; Kaminski et al., 2006; Yellin & Strom, 1997) could be deployed to ensure execution 
continuation. In counterpart, (Benatallah et al., 2005) provides a technique to calculate protocol 
mismatches and similarities in order to exploit the computed differences for generating adequate 
adapters between different protocol versions. The computed adapters allow shifting old instances from 
the old protocol version to the new one. Weber et al. (2008) suggested a set of adaptation patterns to 
allow users structurally change process specifications and consequently facilitate version control for 
business processes’ schema evolution. In opposition, Zhao and Liu (2013) provided a comprehensive 
method for navigating process instances executions of changing process versions.

To manage change impact, Dam and Ghose (2015) proposed an approach for analyzing the 
business protocol of a Web service by mining a version history of a business process model repository. 
On the other side, by Mafazi et al. (2014), suggested another approach to handle changes that are 
concurrently done by various stakeholders. The suggested approach provides solutions for the 
on-the-fly conflict changes through the implementation of behavior consistency rules of business 
processes. Similarly, Fdhila et al. (2015) proposed a generic change propagation approach focused 
on refined process structures in order to ensure propagating changes in a decentralized manner in a 
process choreography scenario.

Petri nets are mostly used in the modeling field, and a wide range of works implements this 
abstract formalism as a tool for managing change impact analysis and for handling issues occurring 
during systems evolution. Moreover, new extensions of this formalism were introduced to distinguish 
concurrent and dynamic systems by suggesting various enhancements of the basic Petri net model 
(Llorens & Oliver, 2004b; Badouel et al., 2003). In this context, Padberg and Kahloul (2018) classified 
reconfigurable Petri nets into three types: reconfigurable low-level nets, reconfigurable stochastic nets, 
and reconfigurable high-level nets. In addition, it is argued in the literature that various reconfigurable 
Petri nets approaches can be classified into three principal classes: rewriting net systems-based 
approaches, graph transformation-based approaches, and hybrid approaches.

Furthermore, changes and crises lead to rapid transformations to remote working and learning 
modes and the need for e-commerce, education-related project development, and maintenance. 
Moreover, an increase in internet traffic has a direct impact on infrastructure and software performance. 
Fedushko et al. (2020) studied the problem of accurate and quick Web-project infrastructure issues, 
bottleneck, and overload identification and explored methods for strategic management of Web 
projects. Chang et al. (2019) suggested a reuse strategic decision pattern framework (RSDPF) based 
on blending ANP and TOPSIS techniques, enabled by the OSM model with data analytics. J. Wang 
et al. (2020) introduced three approaches to predict online conformance through the construction 
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of a classification model automatically based on the historical event log and the existing reference 
process model.

As mentioned previously, an analysis of the state of the art covers a remarkable variety of 
methods for managing change impacts induced by evolution needs. However, the efficiency and 
performance of each proposed method will depend on the formalism used for specifying the protocol 
model and execution traces. Therefore, a robust mechanism to model the migration of active instances 
after protocols’ evolution is inevitable. Furthermore, the success of any approach will depend on 
the formalism used. Before the presentation of our approach, we introduce in the next section the 
necessary materials and methods to make this paper self-contained.

MATERIALS AND METHODS

Materials
This section introduces the preliminary basic notions and definitions, allowing a clear comprehension 
of the paper, followed by a presentation of RONs and the motivations having led to using them in the 
context of changes and evolution of dynamic systems. Below, we present the concepts of PT nets, 
morphisms over PT nets, union, and transformations (Hoffmann et al., 2005; Kahloul et al., 2014).

Definition: PT Nets

A PT net is formally represented by a quadruplet P T e Post, ,Pr ,( ) , where T is a non-empty finite 
set of transitions, P is a non-empty finite set of places, Pre  (for pre-domain) and Post  (for post-
domain) are the two mappings defined as Pr , :e Post T P→ ⊕ . The set PÅ  denotes the set of finite 
multi-sets over the set P  (Hoffmann et al., 2005; Kahloul et al., 2014)

Definition: Morphisms Over PT Nets

A morphism between the two PT nets N T P e Post
1 1 1 1 1
= ( ), ,Pr ,  and N T P e Post

2 2 2 2 2
= ( ), ,Pr ,  is 

a function f N N:
1 2
® . We have f f f

T P
= ( ), , such that: f T T

r
:
1 2
®  and f P P

P
:
1 2
®  are two 

morphisms that map transitions into transitions and places into places, respectively (figure 2). The 
expressions f

T
 and f

P
 satisfy: Pr Pre f f e

T P2 1
 = ⊕  and P Post f f ost

T P2 1
 = ⊕ .

Figure 2. 
Morphisms on PT nets (Hoffmann et al., 2005; Kahloul et al., 2014)
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Definition: Union of PT Nets (Pushout)
The union is a specific construction based on the morphisms defined over PT nets 
N T P e Post
1 1 1 1 1
= ( ), ,Pr , , N T P e Post

2 2 2 2 2
= ( ), ,Pr ,  and I T P e Post= ( )0 0 0 0

, ,Pr ,  with the two 
morphisms f I N: ®

1
 and g I N: ®

2
. The net I denotes a common interface between N

1
 and 

N
2

. The union of N
1
and N

2
 is the Net N T P e Post= ( ), ,Pr , , defined using the two morphisms 

f N N' :
1
®  and g N N' :

2
® . We write N N N

I
:

1 2
+ . The operator +

I
 is called the pushout 

construction or the gluing operator.

Definition: Transformations of PT Nets (Double Pushout)
The transformations of PT nets, also called double pushout, are based on the PT gluing (or pushout) 
construction. Let L K R, ,  and C be four PT nets. A transformation f N N:

1 2
®  transforms the PT 

net N
1
 into PT net N

2
 using the rule r L K R= ( ), , and the match m L N: ®

1
 iff we have the 

double pushout in Figure 3.
In Figure 3, k k m c

1 2
, , , , and n  are morphisms. Thus, the PT net C  is called the context of the 

transformation and it satisfies the following conditions:

1. 	 T T m T m k T
C T L T KT
� �= ( )( )∪ ( )( )1 1

\ ;

2. 	 P P m P m k P
C P L P KP
� �= ( )( )∪ ( )( )1 1

\ ;

3. 	 Pr Pre e
c TC
=

1
 (The relation Pre

C
 is the subset of Pre

1
which concerns only the set of 

transitions: T
C

).
4. 	 Post Post

C TC
=

1
(The relation Post

C
 is the subset of Post

1
 which concerns only the set of 

transitions: T
C

).

Furthermore, the incessant need to model and simulate dynamic systems, as well as to specify 
and manage their changing properties, has been felt in different research areas (Padberg & Kahloul, 
2018). To this end, the notion of reconfiguring Petri nets was introduced in the early nineties (Ehrig 
et al., 1994), and it underwent levels of formalization by many researchers (Padberg & Kahloul, 
2018). These abstract tools can be considered as a family of formal modeling techniques allowing a 

Figure 3. 
The double pushout mechanism (Hoffmann et al., 2005)
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variety of Petri net types, such as: high-level nets, timed or stochastic nets, and object nets (Padberg 
& Kahloul, 2018). Reconfigurable Petri nets consist of marked Petri nets, i.e., a net with a marking 
and a set of rules that modifies the net’s structure at run-time when it is applied (Ehrig et al., 2007; 
Ehrig & Padberg, 2004; Llorens & Oliver, 2004a; Prange et al., 2008). As a witness of the richness 
and the relevance of the usefulness of RONs, they were deployed in various research and industry 
areas (Padberg & Kahloul, 2018) and particularly in reconfigurable manufacturing systems (RMSes; 
Kahloul et al., 2016), flexible manufacturing systems (Tarnauca et al., 2012), workflows in dynamic 
infrastructures (Hoffmann et al., 2008), and concurrent systems (Llorens & Oliver, 2004b).

This interest in using RONs is motivated by their high level of expressiveness and ability to 
specify constraints inherent to dynamic systems. From a specification perspective, RONs were 
initially introduced as high-level nets with nets and rules as tokens (Biermann & Modica, 2008; 
Hoffmann et al., 2005). The main constructions of graph transformations used in Petri nets are the 
union (single pushout) and transformation (double pushout). The formulation of these operations uses 
a set of morphisms over nets. In the following, we recall some definitions of RONs, and we highlight 
their deployment for managing changes and transformations (Ehrig & Padberg, 2004; Kahloul et al., 
2014). To understand the various criteria of RONs, it is essential to mention that these formalisms 
are based on graph transformation theory (Ehrig & Padberg, 2004). A RON model is a complex 
structure, having, on the one hand, the token level, on which nets represent token-nets and double 
pushout production rules express token-rules. On the other hand, it also includes the system level in 
which we can distinguish two types of places depending on the system specification: net-places or 
rule-places, i.e., it includes token-nets or token-rules, respectively (Kahloul et al., 2014). Nevertheless, 
when transitions in the system level trigger the dynamic behavior over markings of the token-net, 
they are considered as fire-transitions, which are expressed as follows.

A transition t  from a net, in which t  updates the marking of N  by firing t  when the latter is enabled. 
A fire-transition requires a guard enabled t true( ) =



   (Kahloul et al., 2014). A new net computed using 

the function: fire N t;( )  is produced by this fire-transition once it is fired (Kahloul et al., 2014). However, 
when transitions trigger the reconfiguration behavior over the structure of the token-nets through the 
application of token-rules, they describe transform-transitions as having the following parameters.

Let R p m� �= ( );  be a rule used for transforming a net, with p  a PT net and m  a morphism. To 
be activated, the transform-transition mechanism supported by the rule R  requires an applicability 
constraint named the guard [applicable N R;( ) ] (Kahloul et al., 2014). Hence, the resulting net having 
a new structure defined through a function: transform N R;( )  is produced as the output of the 
considered transform-transition function (Kahloul et al., 2014).

Given their semantic richness and their theoretical foundation, RONs have benefited from a 
particular interest, both from the research community and from software firms. Nowadays, it is 
observed that various providers offer free and downloadable software tools such as RON-Editor 
(Biermann et al., 2007) and ReConnect (Ede et al., 2012) that are used to simulate and analyze RONs 
models. Further, such tools allow the representation of the system functionalities, where the dynamic 
at the micro-level and macro-level, the applied transformations’ rules, and the system’s configurations 
set are represented. Moreover, RONs grant the ability to use reconfigurable manufacturing systems 
(RMSes; Kahloul et al., 2014). Also, the application of graph transformation theory to a variety of 
Petri net kinds: Algebraic high-level nets, PT nets, and colored Petri nets are some of the RON’s most 
prominent features (Kahloul et al., 2014).

Presentation of the RON-Editor
To show the applicability and feasibility of the proposed approach, we implemented and experimented 
with the RON-Editor (Biermann et al., 2007) tool. The RON-Editor (Biermann et al., 2007) is an 
open-source software tool that provides useful functionalities for managing the life cycle of Petri net 
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models. Furthermore, it allows handling evolution rules of specified Petri nets by taking into account 
occurring transformation rules. Thus, it offers protocol managers an efficient and easy environment 
that facilitates the description of system evolution.

In the RON-Editor tool, business protocols are perceived as Petri nets (PT systems), and their 
evolution is managed by specifying the set of transformation rules. Furthermore, the RON-Editor 
supports the consistency of the RONs by ensuring that rules’ mappings fulfill the features of net 
morphism and that RON places have correct token typing (Padberg & Kahloul, 2018). To realize 
simulation scenarios, the RON-Editor contains an Attributed Graph Grammar engine (AGG; Graph 
Grammar Group, n.d.). Also, it uses Eclipse Modeling Framework (EMF) and Graphical Editor 
Framework (GEF) plug-ins developed as visual editors (Padberg & Kahloul, 2018). Reinforced with 
the previous components, using RON-Editor allows for a large spectrum of functionalities, e.g., 
object nets and net transformation rules, as well as top-level RONs. Therefore, it enables updating 
and managing the evolution of models as high-level transformations materialized by transitions to 
be fired within the models in the RONs editor (Padberg & Kahloul, 2018)

Methods
This section presents the different aspects of our approach intended to manage the dynamic evolution 
of business protocols and analyze change impact on active instances. In our approach, Web services 
business protocols are formalized as Petri net models. This choice is motivated by the dynamicity 
underlying the associated formal tools. Then, we deploy RONs for capturing changes as transformation 
rules, and we formalize protocol evolution by deploying the formalized rules. Once changes are taken 
into account, we describe the needed algorithms for classifying active instances into migratable and 
non-migratable ones, and we specify algorithms for ensuring the migration of active instances of 
Web services. More precisely, our approach for handling business protocol changes and ensuring 
active instances continuation is articulated around four complementary steps.

1. 	 First, we present the case study that will be used throughout the paper to illustrate our approach, 
and we formalize it by using the Petri net formalism.

2. 	 Based on the specified service protocol model, changes are handled by using RONs. Hence, 
protocol operations for handling changes are seen as double pushout rules, and the underlying 
modifications of the model are perceived as reconfigurations of the model. In this context, graph 
transformation techniques and tools are used to express changes occurring during the evolution 
of business protocols.

3. 	 In the third step, we exploit the concept of the reachability graph to calculate the set of instances 
to be migrated to the new business protocol version. However, using RONs as dynamic structures 
leads to a problem during the reachability graph construction phase. Thus, a new reachability 
graph algorithm that allows for the analysis and verification of the RONs is proposed at this stage.

4. 	 We analyze the impact of protocol changes based on backward and forward compatibilities 
properties. According to this analysis, we classify the ongoing instances into migratable and 
non-migratable ones. Lastly, handling the issue of non-migratable instances is tackled by using 
ad hoc protocols or adapter protocols. In this perspective, adequate algorithms are specified.

Presentation of the Case Study
To illustrate the proposed approach, we start by exposing a real-world example of an Australian working 
visa application service inspired by the work of Ryu et al. (2008), which will be used through the 
remainder of the paper to highlight different facets of the proposed approach. This service protocol is 
exhibited in Figure 4, and the interpretation of the set of nodes in these token-nets is presented in Table 1.

The previous protocol can be deployed by the immigration department to manage working visa 
applications for immigrants. It is worth noting that at any given time, tens of thousands of protocol 
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conversations (instances) are in an active state and each of which has reached a particular progression 
level. However, many reasons can induce changes in the regulation governing the immigration 
procedure. Consequently, the amendment of immigration laws may affect the visa application protocol 

Table 1. 
Interpretation of nodes in the Token-nets protocol

Places Transitions

Symbol Interpretation Symbol Interpretation

P0 Start T0 Check eligibility

P1 Eligible T1 Cancel

P2 Cancelled T2 Fill in application

P3 Application ready T3 Submit work experience

P4 Work experience submitted T4 Test English ability

P5 Lodged T5 Submit reference letter

P6 Checked T6 Checked approval

P7 P8 P9 
P10 P11

Reviewed Processed Student 
application ready Graduation 
certificate submitted Student logged

T7 T8 T9 T10 
T11

ReassessConfirmFill in application for overseas 
student 
Submit graduation certificateSubmit passport

P12 Submit reference letter T12 Check approval

T13 Report medical examination

Figure 4. 
Token-net (TN1 ) for an Australia working visa application service
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(Ryu et al., 2008). As an illustration, the new laws can stipulate that (i) after the expiration of a working 
visa, if an applicant decides to reapply, he must submit an employer reference letter and the result 
of a medical examination in order to be accepted and (ii) reviewing the result of the application is 
no longer an option for the applicants. These changes cannot be delayed and must enter into force 
immediately. Obviously, the continuation of active instances having started their interactions based on 
the old protocol version is compromised, and a change impact analysis must be conducted to ensure 
their continuation in the realm of the evolved protocol version. To achieve this goal, first of all, the 
occurring changes must be handled and formalized in the new service protocol specification. The 
next subsection is dedicated to this aspect.

Handling Changes by Reconfiguring RONs
As RONs are used in our approach to representing service protocols, thus the occurring changes 
are perceived as a simple reconfiguration of these specifications acting as double pushout rules. To 
this end, two modeling levels are to be distinguished in order to implement RONs in a manner that 
can handle protocol evolution. First, the token-nets in the token level, defined as nets, allow for the 
exhibition of the static structure as well as the dynamic behavior of the considered business protocol. 
Further, the identification of the token-rules as double pushout rules conducts the reconfigurations of 
the specifications expressed with PT nets. Second, at the system level, places are either rule-places 
or net-places, depending on whether they include token-rules or token-nets, and transitions are fire-
transitions and transform-transitions (Kahloul et al., 2016).

To highlight our propose, we operate the same modifications as proposed by Ryu et al. (2008).

1. 	 Firstly, a place and a transition have been added: the new place ReferenceLetterSubmitted (P12) 
is inserted after the place ApplicationReady (P3), and the transition ReportMedicalExamination 
(T13) links the new place ReferenceLetterSubmitted (P12) to the Lodged one (P5).

2. 	 The second change consists of removing both the Reviewed place (P7) and the associated transition 
Reassess (T7).

To update the service protocol in a fashion that meets the new specification of the visa application 
service protocol, an evolved version that integrates the occurring changes must be redesigned. In 
our context, changes in the Australian working visa application service require the definition of two 
production rules leading to a target service protocol which is a consequence of the business protocol 
reconfiguration. Moreover, a set of morphisms is necessary for constructing the two production rules.

In what follows, we focus on the modifications of the business protocol, and we specify the 
underlying modifications as double pushout rules. For the Australian working visa application protocol, 
changes to the initial service protocol are materialized with two production rules, as shown in Figure 
5. As illustrated in the Figures, applying the pushout rules R1  and R2  ensures the transformation 
of the initial token-nets TN1  to an evolved one TN2 , which will be in turn transformed by the 
second rule R2  to realize to the target token-net TN 3 .

Activation of the Double Pushout Rule R1

The first double pushout rule is expressed with: R p m1� �= ( ), ,  where p L I R� , ,= ( )�  is composed of 
three P T/  sub-nets (with L  = left, I  = Interface, and R  = Right), and m  is a morphism (see 
Figure 5A). More formally, the transformation associated with the rule R1  is expressed with 

TN TN
p m

1 2�

;

→
( )

. This transformation involves the first reconfiguration of the service protocol from 
token-nets TN1  of Figure 4 to the target token-nets TN2  of Figure 9. Figure 6 showcases this rule, 
and it illustrates the double pushout mechanism which triggers the first reconfiguration of the token-
nets TN1  to the token-nets TN2 , according to the context C .
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As it appears in Figure 6, the place ReferenceLetterSubmitted (P12) and the transition 
ReportMedicalExamination (T13) are added to the right sub-net (R). The context C  of Rule 1 , as 
presented above, is depicted in Figure 7. For illustrative reasons, Figure 8 is a deep presentation of 
the underlying two morphisms h

1
and h

2�
associated with the pushout rule R1  . Once the double 

pushout construction of the rule R1  is applied to the initial protocol represented with the token-nets 
of Figure 4, a resulting service protocol depicted in Figure 9 is obtained. It is worth recalling that the 
resulting token-net of Figure 9 represents only an intermediate protocol version that handles changes 
expressed by the production rule R1.  This token-net will serve as input for the second production 
rule R2  . Hereafter, we focus on the second rule R2  and its specifications.

Activation of the Double Pushout Rule R2

The second double pushout rule R2  is formalized as follows.
R p m2� �= ( )′ ′; �where ′ ′ ′ ′= ( )p L I R� � , , ,  consists to a three P T/  sub-nets, (with ¢L : left, ¢I : 

Interface, and ¢R : Right) and m  is a morphism (see Figure 5B). The transformation associated with 

the rule R2  is expressed as TN TN
p m

2 3→
′ ′( );

. In terms of formal specifications, the morphisms 
associated with the rule R2  are h h h

1 2 11
' ' ', , , �h

12
’ , � �m �’c , ,¢ and ¢g , while �C’  expresses the context 

of the rule (see Figure 5B). Figure 10 showcases the relationship between the different elements 
′ ′ ′( )L I R, ,  managed by the double pushout rule 2 . Once it is triggered, this rule allows the second 

reconfiguration of the protocol by taking the token-net TN2  of Figure 9 as input, which will be 
transformed into the target token-net TN 3  of Figure 11. (The context � ’C  of the rule R2  and the 
associated morphisms h h h

1 2 11
' ' ', , ,  h

12
' , � �m’c , ,¢  and ¢g  are not illustrated for lack of space).

The System Level Net
As it is argued previously, changes in the protocol specifications are governed by the RONs model 
of the system during the application of successive transformations. Two types of transitions in the 
system level are to be distinguished: fire-transitions and transform-transitions. While a transform-
transition changes the structure of the token-net, the fire-transition one changes the marking of the 
token-net. Figure 12 shows the relationships between the various fire-transitions, transform-transitions, 
and the considered token-nets. As it appears in the figure, three net-places np np np1 2 3, , ,( )  containing 
respectively (TN1  in Figure 4, TN2�in Figure 9, and TN 3  in Figure 11) the previous token-nets 
form the system-kernel (see the rounded forms at the right side of Figure 12).

Figure 5. 
An overview of the double pushout rules
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Figure 6. 
Double pushout of the rule R1

Figure 7. 
The context C  of the transformation based on the rule R1
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As shown in the top of Figure 12, the first configuration of the reconfigurable system occurs 
when the initial token-nets TN1  marks the net-place np1 . Then, the markings of TN2  and TN 3  
are activated, respectively, through the application of the token-rules R R1 2,( )  in Figure 5. 
Furthermore, it is observed in the Figure that two rule-places rp rp1 2,( ) , expressing, respectively, 

Figure 8. 
The morphisms h

1
 and h

2
 underlying the first rule R1
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the two initial markings token-rules R R1 2,( ) , are highlighted. The figure illustrates that the final 
PT net TN 3  is obtained by applying consecutive fire-transitions and transform-transitions, which 
are triggered according to particular guards.

In our example of the working visa application service, both fire-transitions and transform-
transitions, must have guards: enabled t( )



  for fire-transition and a guard applicable N R;( )



  for 

achieving transform-transition. Token-nets of the system (e.g., TN1 ) are linked to fire-transitions 
(e.g., fire-transition one) via specific guards of type fire (e.g., fire� ,TN t1( ) ). (See the top-left side of 
the figure). On the other hand, the transform-transition allows shifting token-nets of the system from 
an old configuration to an evolved one via transfom-transitions (e.g., transform-transition 1) under 
constraints of applicable guards (e.g., � � ,applicable TN R1 1( ) ), as depicted in Figure 12.

Managing Active Instance Migration
The third stage of our approach consists of managing active instances migration by exploiting the 
previously conceived models. We must now focus on the issue of ensuring active instances continuation. 
This is conducted by analyzing the ongoing instances. In this sense, both instances reached states, 
and their historical achieved activities are examined. This exploration allows splitting instances into 
two classes. Instances compatible with the operated changes are considered migratable, contrarily to 
those instances that cannot meet changes and are considered non-migratable. For populating these 
two instance classes with their suitable instances, the notions of backward and forward compatibility 
are used as a foundation and guidelines (Ryu et al., 2008).

In our approach, the identification and classification of active instances into migratable and 
non-migratable ones relies on the concept of a reachability graph for RONs. Such a graph allows 
deploying the principles of compatibility and replaceability to distinguish the instances that can be 
safely migrated when their protocol is modified. In this perspective, we operate in three incremental 
stages. First, we highlight the usefulness of constructing the reachability graph of the evolved system, 

Figure 9. 
The resulting token-net TN2  of the reconfiguration based on R1
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and then we elaborate on an algorithm for its generation. After that, we describe forward and backward 
compatibilities algorithms to ensure the migration of active instances to the new protocol version, 
according to the constructed reachability graph.

Generation of the RONs Reachability Graph
By using RONs for managing protocol evolution, the issue of managing active instances migration 
is relegated to calculating the reachability graph of the protocol and then exploring it for filtering 
migratable instances from non-migratable ones. Thereby, the reachability graph constitutes a “code of 
good behavior” and a guideline that active instances must comply in order to continue their execution 
in the realm of the new protocol. Consequently, instances that cannot meet the specification described 
in the reachability graph cannot continue their execution and, thus, are considered non-migratable 
ones. However, constructing such a graph is not an obvious task. In fact, in the context of ordinary 

Figure 10. 
Double pushout of the rule R2
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Petri Nets, reachability graphs are constructed without any particular difficulties, but the problem 
arises when dealing with formalisms having dynamic structures, such as RONs.

In what follows, we propose a detailed algorithm, named the reachability graph generator 
algorithm (RGGA) for generating the reachability graph based on an initial RON introduced in input 
and according to a set of transform-transitions (abbreviated as TT), as well as a set of fire-transitions 
(abbreviated as FT). In the algorithm, vertices represent places and their markings, while edges allow 
linking these vertices.
Algorithm 1: RGGA « The Reachability Graph Generator Algorithm » 
Input: start 
Output: vertices and edges of the reachability graph 
begin 
1.          vertices: = new ArrayList<>(); 
2.          vertices.add(start); 
3.          edges = new HashMap<>(); 
4.          List <HighLevelPetri> q: = new ArrayList<>();
5.          q.add(start);
6.          HighLevelPetri curr: = null; 

Figure 11. 
The resulting token-net TN3  of the reconfiguration based on R2
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7.          while (!q.isEmpty()) do
8.          curr: = q.remove(0);
9.          Set <String> firables: = curr.getFirable().keySet(); 
10.          if (!firables.isEmpty()) then 
11.          List <String[]> el: = edges.get(curr.getName()); 
12.          if (el == null) then 
13.          edges.put(curr.getName(), new ArrayList <> ()); 
14.          endif 
15.          endif 
16.          HighLevelPetri copy: = null; 
17.          for (String hlt: firables) do 
18.          copy: = curr.copy(); 
19.          HighLevelTrans t: = copy.getFirable().get(hlt); 
20.          if (t instanceof FireHLTrans) then 
21.          int fiSize: = ((FireHLTrans) t).getFi().size(); 
22.          for (int i = 0; i < fiSize; i++) do 
23.          copy: = curr.copy(); 
24.          t: = copy.getFirable().get(hlt); 
25.          List <Transition> fi: = ((FireHLTrans) t).getFi(); 
26.          for (int j = 0; j < i; j++) do
27.          fi.remove(0); 
28.          endfor 
29.          String n: = fi.get(0).getName();
30.          t.fire(); 

Figure 12. 
The RON model of the system
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31.          HighLevelPetri id: = contains(copy); 
32.          List <List<String>> path: = new ArrayList<>(); 
33.          curr.getPath().forEach(l->path.add(new 
ArrayList<>(l)));
34.          path.forEach(l->l.add(n));
35.          if (id == null) then 
36.          copy.setName(“HLP”+vertices.size()); 
37.          copy.setPath(path); 
38.          copy.setStartIndex(curr.getStartIndex()); 
39.          vertices.add(copy); 
40.          q.add(copy);
41.          edges.get(curr.getName()).add(new String[]{/*t.
getName()+SEP+*/n, copy.getName()});
42.          else 
43.          id.getPath().addAll(path); 
44.          edges.get(curr.getName()).add(new String[]{/*t.
getName()+SEP+*/n, id.getName()});
45.          endif 
46.          fi.remove(0); 
47.          endfor 
48.          else 
49.          t.fire(); 
50.          HighLevelPetri id: = contains(copy); 
51.          List <List<String>> path: = new ArrayList<>(); 
52.          curr.getPath().forEach(l->path.add(new 
ArrayList<>(l)));
53.          int st: = Integer.parseInt(t.getName().charAt(2)+”“); 
54.          if (id == null) then 
55.          copy.setName(“HLP”+vertices.size()); 
56.          copy.setPath(path); 
57.          copy.setStartIndex(st); 
58.          vertices.add(copy); 
59.          q.add(copy);
60.          else 
61.          id.setStartIndex(st); 
62.          if (path.size() > id.getPath().size())then 
63.          id.setPath(path); 
64.          endif 
65.          endif 
66.          endif 
67.          endfor 
68.          endwhile 
end

Description of the Algorithm RGGA
All the graph components are RONs with different token-net positions and markings (lines 1–2). 
The initial RON start and having the name HLP0 is introduced as input of the algorithm RGGA. At 
first, the algorithm prepares the components (each vertex) of the graph. The algorithm uses a queue 
to explore the children of a node (lines 5–6), and it stores the vertices in a list whenever a new one 
is discovered, while edges are stocked in a map (lines 3–4). The key of this map is the name of a 
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vertex, while the value is a list of child vertices that are generated by applying a transition from this 
parent node.

The RGGA algorithm starts without any vertex in the queue, except for the initial RON one 
start (lines 3–4). During the algorithm progression, new vertices are added to and removed from 
the queue until it is empty. If this last condition is satisfied, the algorithm stops (the big loop from 
line 7 to the end). The algorithm takes the first element (RON) in the queue and removes it (line 8). 
This element is the variable curr in the algorithm. Now, all the fireable transitions of that RON are 
found (line 9) independently from their type (transform or fire transitions). This list of transitions 
is executed (fired) one by one (lines 17–30). After each transition firing, a new RON is obtained 
(line 30). At this stage, the parent RON curr and the new child RON copy are created. Therefore, 
two possible cases are to be distinguished, according to the fired transition type having generated a 
copy: a fire-transition (FT) or transform-transition (TT). In the first case (FT), the copy is tested to 
distinguish if it is a new vertex or if it already exists in the vertices set. In the case where it is a new 
one, it is added to the vertices set (lines 35–41) and to the queue structure (line 40). Furthermore, it 
is added the edge from curr to copy fired by this FT to the map of edges (line 41). However, if copy 
already exists in vertices (line 48), it is only added to the edge from curr to copy, which is fired by 
this FT to the map of edges (line 44). Then, all possible paths (fired transition sequence) that lead 
to curr from the root vertex start (line 43) are checked, concatenated in the new transition for each 
path (line 44), and stored in copy. Now, if the transition is transform-transition (TT), here again, we 
examine if copy is a new vertex (line 54) or an already existing one in the vertices set (line 60). If it 
is a new one, it is added to the vertices set (line 58) and to the queue (line 59) without adding edges. 
In the case where copy is in the vertices, no changes will be added. As with the FT case, the paths 
inherited from curr are set (line 63).

Ensuring Forward Compatibility
In the context of business protocol evolution, forward compatibility refers to the ability for clients 
of active conversations to continue interacting correctly with a given service after it is migrated to 
the new protocol (Ryu et al., 2008). Such a concept is crucial for conducting change impact analysis. 
Based on our previous framework articulated on the RONs structures and their associated reachability 
graph, we present below an algorithm for ensuring forward compatibility of active instances.
Algorithm 2: FComp (forward compatibility)
Input: List Place ps, Petri net, List Rule chain

Output: decision on forward compatibility of instances 
begin 
Petri copy: = net.copy(); 
for (Rule r: chain)do
r.apply(copy);
endfor 
List <Place> nextParam: = new ArrayList<>(); 
for (Place p: ps) do 
List <Transition> ts: = new ArrayList<>(); 
net.getTransitions().forEach(t->{boolean exist = t.getPre().
stream().anyMatch(l->l.getP().getName().equalsIgnoreCase(p.
getName())); 
if (exist)then ts.add(t);}); 
if (ts.isEmpty()) then 
boolean comp: = copy.getPlaces().stream().anyMatch(pl->pl.
getName().equalsIgnoreCase(p.getName())); 
if (!comp)then 
return false; 
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endif 
else continue; 
endif 
for (Transition t: ts) do 
Transition tn: = copy.getTransitions().stream().filter(tr- >tr.
getName().equalsIgnoreCase(t.getName())).findFirst().orElse(null); 
if (tn == null || !tn.getPre().stream().anyMatch(l->l.getP().
getName().equalsIgnoreCase(p.getName())))then 
return false; 
else 
for (Link lnk: t.getPost()) do 
if (!tn.getPost().stream().anyMatch(l->l.getP().getName().
equalsIgnoreCase(lnk.getP().getName())))then 
return false; 
endif 
nextParam.add(lnk.getP()); 
endfor 
endif 
end for 
end for 
return nextParam.isEmpty(?true:isForwardComp(nextParam, net, 
chain); 
end

Description of the Algorithm Fcomp
This algorithm aims to check rules contained in the parameter chain when they are applied to the 
Petri net designated with net. First, the algorithm creates a copy of the original Petri net (parameter 
net) and applies all the rules in the list named chain (line 1), and the resulting modified net is called 
copy (lines 2-4). Now, the two nets (net and copy) are compared place by place and transition by 
transition. During this comparison, each place existing in the first Petri net net should also exist in 
the copy one. The same verifications are conducted for transitions of the two Petri nets. In the case 
in which the comparison induces a mismatch, the considered Petri nets (net and copy) are considered 
incompatible. However, not all places and transitions are examined. In fact, we are only interested in 
the marked places and all structures of the Petri net outgoing after the current position, i.e., forward 
compatibility. To do that, a third parameter named ps is introduced in the algorithm. It captures the 
marked places during the first call of the function, and it represents the list of places starting from 
the parameter net (line 6). At this stage, the Fcomp algorithm checks if each transition in ts exists in 
the Petri net copy (line 8). In the case in which this test is negative, the algorithm directly returns 
false (line 13). Otherwise, it gets all the POST places from it and adds them to a list (variable “List 
Place nextParam”). Now, if the algorithm terminates all the ts elements without returning any 

false, this means that the examined region in the two nets (net and copy) is a compatible one. Since 
it is the case, the algorithm continues checking the next region, which begins from the places contained 
in the list nextParam, and the algorithm operates a recursive call and restarts from this new list (line 
31).

Ensuring Backward Compatibility
After having ensured migration to the new protocol, the backward compatibility class checks if the 
achieved backward path of an instance (also called history path) is compatible in the context of the 
new protocol (Ryu et al., 2008). Based on our previous modeling, we describe an algorithm for 
performing this compatibility type.
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Algorithm 3 BComp (backward compatibility)
Input: History h, List <Rule> chain
Output: decision on backward compatible 
begin 
Petri cp: = h.getEnd().copy(); 
for (Rule r: chain) do 
r.apply(cp); 
endfor 
for (Place m: cp.getMarked()) do 
m.setTokens(0); 
endfor 
for (Place m: h.getStart().getMarked()) do 
Place toM = cp.getPlaces().stream().filter(pl->pl.getName().
equalsIgnoreCase(m.getName())).findFirst().orElse(null); 
if (toM == null)then 
return false; 
endif 
toM.setTokens(m.getTokens()); 
endfor 
int indS: = -1; 
for (int i = 0; i < vertices.size(); i++) do 
HighLevelPetri hlp: = vertices.get(i); 
for (HighLevelPlace <Petri> hlplace: hlp.getNetHolders()) do 
for (Petri p: hlplace.getElems()) do 
if (p.equals(cp)) then 
indS: = i; 
break; 
endif 
endfor 
if (indS >= 0)then 
break; 
endif 
endfor 
if (indS >= 0)then 
break; 
endif 
endfor 
HighLevelPetri st: = vertices.get(indS); 
Petri startCopy: = h.getStart().copy(); 
Map <String, List<Rule>> trRule: = st.transRuleMap(); 
for (String ring: h.getTransSeq()) do 
String[] trs: = ring.split(SEP); 
if (trs[0].startsWith(“TT”)) then 
Rule toEx: = trRule.get(trs[0]).get(0); 
toEx.apply(startCopy); 
else 
startCopy.getTransitions().stream().filter(tr->tr.getName().
equalsIgnoreCase(trs[0])).findFirst().get().fire(); 
endif 
List <String[]> arcs: = edges.get(st.getName()); 
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String[] arc: = null; 
for (String[] a: arcs) do 
if (a[0].equalsIgnoreCase(ring)) then 
arc: = a; 
break; 
endif 
endfor 
if (arc = = null)then 
return false; 
endif 
st: = vertices.get(Integer.parseInt(arc[1].substring(3, arc[1].
length()))); 
for (HighLevelPlace <Petri> hlplace: st.getNetHolders())do 
if (!hlplace.getElems().isEmpty()) then 
List <Place> nMark: = hlplace.getElems().get(0).getMarked(); 
for (Place m: startCopy.getMarked()) do 
Place nm = nMark.stream().filter(pl->pl.equals(m)).findFirst().
orElse(null); 
if (nm == null || nm.getTokens() != m.getTokens())then 
return false; 
endif 
endfor 
endif 
endfor 
end for 
return true; 
end

Description of the Bcomp Algorithm
The Bcomp algorithm aims to ensure that a sequence of transitions expressing the historical achieved 
activities in the former protocol is still available in the new specification of the Petri net after its 
improvement with the list of rules called chain. First, the evolved Petri net called cp is obtained by 
making a copy of the current instance in the history (called h.getEnd(); lines 2–4) and after having 
applied the rules set (chain; line 1). Now, the generated reachability graph is explored in order to 
search the variables vertices and edges in the initial Petri net leading to cp. If this exploration results 
in a positive conclusion, then the obtained sub-net is called st (line 33). In this case, we capture the 
real start instance from h (called startCopy; line 34). At this stage, two available nets are available: the 
real start instance startCopy and the new protocol start instance st. The algorithm takes the transition 
sequence of the history (variable h.getTransSeq()) and applies it to startCopy one by one (line 36). 
After each activation of the transition t to startCopy, the marking of this last one is modified, and it 
is compared to the child st coming from the edge t (from variable edges; line 44). If this comparison 
leads to a difference between the examined two paths, it is induced that the new protocol loses 
some places or transitions having already existed in the former version. In such a situation, a false 
conclusion is produced in the output, and the algorithm terminates its execution. Otherwise, the 
algorithm continues its progression by handling the whole transition sequence until it encounters an 
incompatibility situation, and it returns a true result (line 68).

The previous algorithms allow filtering migratable and non-migratable instances. Furthermore, 
they allow extracting the corresponding place reached by each migratable instance after its transfer 
to the new protocol. These places are called replaceable places. Since the name of the corresponding 
places may be altered by the service manager, a possible solution to this problem is suggested by Ryu 
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et al. (2008). This can lead to finding a place with an adequate corresponding name or concluding that 
the manager maps the new corresponding place. In the absence of the aforementioned scenarios, it is 
concluded that the considered place was deleted in the new process after having operated its evolution.

Handling Non-Migratable Instances
As was argued previously, active instances of an evolved protocol cannot be migrated to the new 
protocol version. Following the filtration of instances, satisfying forward and backward compatibilities 
by exploiting the previous algorithms, the remaining instances that cannot satisfy the compatibility 
types are managed in a special fashion. Using the ad hoc protocol is one of the most known approaches 
in the literature to manage non-migratable instances. Protocol managers must specify ad hoc protocols 
to ensure instances continuation and allow bridging the gap between the need for specifying the 
occurring changes per the new protocol and aims to guarantee the migration of a broad spectrum 
of active instances. By using ad hoc protocol, active non-migratable instances can continue their 
interaction on the evolved protocol as they are interacting with the old one. However, specifying 
ad hoc protocols is a challenge that needs to capture both protocols’ similarities and mismatches. 
Nevertheless, based on our framework articulated on RONs for representing service protocols and 
their associated pushout rules for managing changes, the concern of specifying ad hoc protocols is 
approached in a more formal manner. In this sense, ad hoc production rules are conceived initially 
and then are used to produce the related ad hoc protocol. In fact, modeling and specifying ad hoc 
protocols is reduced to managing ad hoc production rules, and it is achieved transparently.

Figure 13 below depicts an ad hoc production rule. As it is shown in the figure, this production 
rule specification stipulates that the transition T13 (report medical examination) and the place P14 
(confirmed) are inserted before the final place P8 (processed) by using a double pushout rule. By doing 
that, a gateway is established in the ad hoc protocol description. It ensures avoiding the production 
of future execution exceptions and run-time errors.

The previous pushout rule aims to handle service evolution requirements of the initial protocol of 
the Australian visa application and the migration needs for non-migratable instances. More precisely, it is 
used to elaborate the ad hoc protocol. As it appears in Figure 14, the resulting ad hoc protocol will serve 
to ensure the continuation of non-migratable instances of the initial Australian visa protocol in Figure 4.

RESULTS

This section exposes the results of the implementation of our approach. We start by presenting various 
scenarios describing the simulation of the Australian working visa application protocol and its 

Figure 13. 
Ad hoc production rule for the Australian visa protocol



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

25

evolution. Also, we depict some migration results. The Australian visa application protocol used in 
this paper and its related transformation rules were implemented and modeled in the RON-Editor 
tool as Petri net. As shown in Figure 15, the transformation rule � �R1 triggered the reconfiguration 
process of the token-net TN1  of Figure 4 to the token-net TN2  of Figure 9. Once the transformation 
rules were applied to the initial Petri net, the resulting token-net TN1  was obtained, as shown in 
Figure 16. Moreover, Figure 17 below shows the system-level net implemented in the RON-Editor.

Once the Australian working visa protocol was implemented in the RON-Editor and adequate 
transformations were performed, the active instances migration process could be triggered. Then 
experimental results were conducted. Furthermore, Figure 18 represents the results of the management 
of non-migratable (incompatible) instances.
vertex count: 38 \% we have 38 vertices
edge count: 35 \% we have 35 edges 

Figure 14. 
The ad hoc protocol



International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

26

(HLP0, TT1, HLP1) 
(HLP0, FT1, HLP2) 
(HLP1, TT2, HLP3) 
(HLP1, FT2, HLP4) 
          

(HLP34, FT3, HLP36) 
(HLP35, TT2, HLP37) 

Figure 15. 
The transformation rule R1

Figure 16. 
The Token-Net TN1
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Figure 17. 
The system level net (the RON model)

Figure 18. 
Managing non-migratable (incompatible) instances
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HLP0: < <  
NP1:[TN1:[P0:1,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P7:0,P8:0,P9:0,P10:0
,P11:0,],], 
NP2:[], 
NP3:[], > >  
---------------- 
HLP1: < <  
NP1:[], 
NP2:[TN1:[P0:1,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P7:0,P8:0,P9:0,P10:0
,P11:0,P12:0,],], 
NP3:[], > >  
---------------- 
HLP2: < <  
NP1:[TN1:[P0:0,P1:1,P2:0,P3:0,P4:0,P5:0,P6:0,P7:0,P8:0,P9:0,P10:0
,P11:0,],], 
NP2:[], 
NP3:[], > >  
---------------- 
HLP3: < <  
NP1:[], 
NP2:[], 
NP3:[TN1:[P0:1,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P8:0,P9:0,P10:0,P11:
0,P12:0,],], > >  
          

HLP35: < <  
NP1:[], 
NP2:[TN1:[P0:0,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P7:1,P8:0,P9:0,P10:0
,P11:0,P12:0,],], 
NP3:[], > >  
---------------- 
HLP36: < <  
NP1:[], 
NP2:[], 
NP3:[TN1:[P0:0,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P8:1,P9:0,P10:0,P11:
0,P12:0,],], > >  
---------------- 
HLP37: < <  
NP1:[], 
NP2:[], 
NP3:[TN1:[P0:0,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P8:0,P9:0,P10:0,P11:
0,P12:0,] > > 

DISCUSSION

Change management discussions in the research literature are restricted to managing simple operations, 
consisting only of adding and removing states and messages (Azough et al., 2009; Benatallah et al., 
2005; Liske et al., 2009; Papazoglou, 2008; Ryu et al., 2007, 2008; Skogsrud et al., 2007; Y. Wang 
& Wang, 2013). Furthermore, only strict compatibility scenarios were addressed, and migration is 
conditioned by obligation rules that the running instances must satisfy to be migrated to the new 
protocol version. Thus, a major deficiency of the cited contributions consists of reducing protocol 
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compatibility to its obvious case (strict compatibility). Although Khebizi et al. (2017) proposed a 
declarative language to manage protocol evolution by specifying a set of migration patterns, the 
proposed framework appears very rigid and far from a concrete implementation.

In our approach, we ensure the junction between the formal aspect based on the RONs formalism 
and the practical aspect articulated on the reachability graphs and ad hoc production rules. On the one 
hand, old and new business protocols are modeled as Petri nets, and protocol evolution is perceived 
as a set of transformation rules. On the other hand, after protocol changes, RONs are used to handle 
the compatibility properties, and the reachability graph is exploited to ensure instance migration.

Furthermore, in our approach, we handle the sub-set of non-migratable instances that do not 
comply with the evolved protocol specification. Instead of using complicated ad-hoc protocols, as 
proposed by Benatallah et al. (2005), we deal with non-migratable instances by generating ad hoc 
production rules. We recall that in our approach RONs and the reachability graph are used as the main 
pillars to perform the progression of active instances according to the new protocol version. Notably, 
the analysis of the reachability graph of the RONs allows for effectively distinguishing migratable 
instances from non-migratable ones by specifying double push-out rules. The previously described 
algorithm RGGA allows for the construction of such a reachability graph, and the algorithms FComp 
and BComp are used to ensure, respectively, forward and backward compatibility properties.

From a practical point of view, as the RON-Editor allows basic functionalities for creating object 
nets and transformation rules, protocol evolution is expressed as a set of transitions (i.e., double 
pushout rules) to be fired in the RONs editor. Hence, once the reachability graph has been built, it 
is used to identify and transfer the migrating instances to the new version of the protocol. However, 
non-migratable instances are managed by deploying ad hoc production rules.

To evaluate the applicability of the proposed approach and to assess its relevance, we examine 
its effectiveness in a real-world scenario related to the Australian working visa application service. 
First, the associated service protocol is created in the RON editor as a Petri net model, and a synthetic 
instances dataset containing 5,000 instances was randomly generated and introduced as input of the 
system. Then, we operated various changes to the initial protocol description by adding or removing 
places and transitions. Such changes are expressed in the editor as transformation rules. After that, 
we deploy the previous reachability graph generator algorithm RGGA to generate the reachability 
graph of the visa protocol. Then, we analyze the impact of protocol changes based on backward and 
forward compatibilities properties and according to Fcomp and Bcomp algorithms.

The experimental results show that around 70% of active instances satisfy the backward or forward 
compatibility constraints and, consequently, are transparently migrated to the new protocol version. 
This important rate of migratable instances is justified by the low degree of change operations made 
on the protocol schema. However, for the remaining non-migratable instances (i.e., 30% of active 
instances), we apply the ad hoc protocol techniques by defining specific ad hoc production rules in 
the RON editor. For more flexibility in the proposed framework, the protocol manager enabled to 
define and customize his own context-specific migration rules that map old instances to new ones. 
This task is accomplished by specifying ad hoc production rules to be exploited in the RON editor 
for managing non-migratable instances.

We are convinced that giving the possibility to users to specify their own migration rules reinforces 
and improves the proposed conceptual framework. Indeed, more flexible migration strategies can be 
developed and configured by users when managing instances migration. It is worth noting that even 
though we consider only the business protocols of the Australian visa protocol during our experiment 
process, the principles proposed in our approach remain valid and can be applied to any other type 
of business process.

In this section, we discuss the results of our experiment. First, the screenshot in Figure 15 depicts 
two different parts. The first window, at the left of the figure, exposes the LHS expressing the Petri 
net N1 , whereas the RHS represents the Petri net TN2 . Furthermore, Figure 16 shows the net-places 
np1 , the system net, the set of reconfiguration rules, as well as the object nets which were added by 
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the user. Notably, Figure 17, there are two rule-places rp rp1 2,  containing, respectively, two token-
rules R R1 2,( )  as mentioned in the initial Figures 5 (a) and 5 (b). In addition, there are three net-places 
np np1 2,  and np3  handling, respectively, the three token-nets TN TN TN1 2 3, , ,( )  as presented 
previously in (see Figures 4, 9, and 11). The screenshot also exhibits three fire-transition and a 
transform-transition 1 (in green color), which is enabled. It is worth noting that, as managing 
compatible instance migration can be operated with no particular difficulties, in our experimental 
process, the focus is made on incompatible ones needing specific attention.

Based on the forward and backward compatibilities principles, three classes of incompatible 
conversations are distinguished.

•	 Conversations with an incompatible history and a compatible forward path,
•	 Conversations with a compatible history and an incompatible forward path, and
•	 Conversations with both an incompatible history and incompatible forward path.

As it can be noted in Figure 18, an excerpt showing some migration results is depicted. The third 
group contains two separate execution paths. The first one expresses incompatible conversations with 
a transition path T0.T2.T5 and the second one is T0 T2 T5 T6.

CONCLUSION

Dynamic business protocol evolution is a crucial aspect in organizations evolving in dynamic 
and changing environments that are permanently constrained to update their business processes. 
Consequently, managing active instance migration after a business process evolution is a challenging 
issue for which both industrial and academic stakeholders have suggested many systematic approaches 
and techniques. In this work, a new approach based on RONs and their associated transformation 
rules are proposed to model service protocols and manage their evolution. The reachability graph of 
the evolved Net is constructed and exploited as a cornerstone to analyze the impacts of changes. The 
conceived framework allows handling instances migration to the new protocol version by exploiting 
the reachability graph of RONs. Furthermore, based on the Ron formalism and its properties, we 
can distinguish which conversations can be migrated to a new protocol when an old one has been 
changed. Finally, we thoroughly examined a real-world case study (the business protocol for the 
Australian working visa application service), and the approach is simulated and experimented with 
by using the RON-Editor tool.

As perspectives of our future work, we plan to deploy and implement the proposed approach to 
large scenarios of protocols while constructing suitable reconfigurable Petri nets in the context of 
business protocol evolution, such as e-commerce processes, e-learning, and e-health, and to analyze 
the related difficulties and impacts. Also, we plan to examine the performance of the conceived 
framework regarding the complexity of the process structure (the number of split and join constructs) 
and the number of active instances. As another possible orientation, we plan to focus on the data 
aspect by considering changes impacts on manipulated data and their consistency.
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