
DOI: 10.4018/ijoci.318446

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Comprehensive Framework-Based
Reconfigurable Object Nets for Managing
Dynamic Protocols Evolution
Radja Hamli, MISC Laboratory, University Constantine 2 – Abdelhamid Mehri , Constantine, Algeria

Allaoua Chaoui, University Constantine 2, Algeria

Raida Elmansouri, University Constantine 2, Algeria

Ali Khebizi, LabSTIC Laboratory, 8 May 1945 University, Guelma, Algeria

 https://orcid.org/0000-0002-5372-8201

ABSTRACT

In the change management context, handling web service evolution is a challenging issue that aims
to adapt deployed business processes to the perpetual changes occurring in enterprises environments.
While existing approaches deal with the problem by focusing only on migratable instances, in this
approach the authors propose a paradigm shift based on reconfigurable objects nets (RONs) to allow
running service instances continuing their execution according to the evolved protocol specifications. In
this approach, service protocols are modelled as petri nets, and changes are perceived as transformation
rules. Further, reachability graphs are deployed for calculating migratable services instances after
evolution. The conceived framework allows migrating active instances from the old protocol version
to the evolved one. Web service protocol compatibility and replaceability aspects are addressed to
distinguish migratable services instances from non-migratable ones. The authors illustrate their
contribution and highlight advantages of using RONs through a real-world scenario related to the
visa application service.

Keywords
Business Protocols, Dynamic Protocol Evolution, Instances Migration, Reconfigurable Object Nets,
Reconfigurable Petri Nets, Service Instances, Web Services

INTRODUCTION AND PROBLEM STATEMENT

Business processes constitute the cornerstone of modern organizations. Thus, companies invest
huge efforts and sums for managing the associated life cycles while modeling and maintaining their
processes schemes. Meanwhile, as a revolutionary technique in the software industry, Web services
are becoming the new generation of software components allowing the implementation of various
kinds of business processes. In fact, Web services technology is suitable for supporting the integration
of distributed and heterogeneous information systems.

https://orcid.org/0000-0002-5372-8201

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

2

Two elements are fundamental to enhancing the interactivity level between the different
stakeholders involved in Web services environments. First, the service interface describes static
elements useful for invoking the available operations, like messages, types, port types, and the
required protocol. However, as service operations cannot be invoked in an aleatory fashion, the
service protocol represents an abstract tool to specify the operations sequences imposed by the service
provider according to his business logic. In a nutshell, a service protocol is an abstract model which
handles the sequence of messages that a service and its clients exchange to achieve a certain business
goal (Alonso et al., 2004; Ryu et al., 2008; Benatallah et al., 2006). In this perspective, the research
literature has highlighted the usefulness of service protocols, and various models performing different
expressivity and relevance levels have been suggested to handle different types of constraints.

Nowadays, contemporary enterprises evolve in a turbulent environment from which they recover
information related to customer needs, partners, and competitors, and for which they produce consumer
goods for clients and other companies. Indeed, due to the phenomenon of economic globalization
and as a consequence of advances in information and communication technology (ICT), the market
has become global, and competition is increasingly hard. Consequently, enterprises must face a high
level of dynamicity where evolutions become intrinsic aspects of such competitive environments. The
development of modern corporations leads to their transformation into open systems that have close
connections with a highly unexpected and unstable environment; in return, their survival is dependent
on them. Many reasons, such as changes in the business logic or business strategies, the evolution of
laws and regulations, and adaption needs, can lead to changes in the already deployed Web services
specifications. Business protocol evolution involves updating an old protocol description, e.g., adding or
removing activities or steps in the current procedure to comply with new business requirements (Khebizi
et al., 2017). In this context, a crucial issue lies in the management of active instances having started
their interactions based on the old service protocol version. In fact, stopping a system while execution
instances are still running may involve a loss of historical work that has been accomplished. Therefore,
the ability to ensure the system’s continuation without stopping it should be an option. However, the
problem is the management of the ongoing instances having started according to the previous protocol
when it has been modified. To address such issues, a thorough analysis of active instances that need
to comply with the business modifications is required. Hence, defining a seamless migration strategy
must focus on two complementary aspects: the business protocol specification and the progression level
of instances to be migrated to the new protocol (Khebizi et al., 2017). Ryu et al. (2008) proposed three
migration strategies: continuation, migration to the new protocol, and migration to ad hoc protocol.
Figure 1 illustrates the scenario of business protocol evolution and its challenging issues.

To face the challenge of managing dynamic business protocol evolution, high-level modeling
techniques and formal methods are very useful for establishing a solid theoretical foundation that
will facilitate the management of the problem in an adequate and formal fashion. Thus, the main
goal of this work consists of focusing on abstract Web service specifications by using formal and
abstract tools in order to address the problem of dynamic Web services evolution and to examine
entailed impacts of change management. Among the panoply of abstract models that have proven their
strength, soundness, and validity in various research areas, Petri nets are the most widespread ones
in the field of dynamic and real time-systems. The Petri net formalism is intensively used to model,
analyze, simulate, control, and evaluate the behavior of distributed and concurrent systems (Murata,
1989). Nonetheless, it is observed that basic Petri nets do not provide a direct method for handling
difficulties induced by dynamic changes in systems. To overcome this limitation, this formalism was
enhanced with enriched extensions allowing a formalization of different features.

In fact, the extension of basic Petri nets to reconfigurable Petri nets (RONs for short) was inspired
by the evolution in software and hardware systems advances in the trend to manage dynamic systems
changes. This improvement replaces the structures of classical systems from rigorous to flexible,
open, and dynamic ones (Padberg & Kahloul, 2018). Reconfigurable Petri nets provide a soundness
dimension to classical Petri nets that make the discrimination between the levels of change possible

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

3

due to the integration of a set of rules that can change the Petri nets (Padberg & Kahloul, 2018).
Consequently, we are convinced that such formalism is a natural, effective, and suitable tool for
handling dynamic business protocol evolution.

Dynamic change management of Web service business protocols is a major issue to be tackled in
order to strive for rapid reconfiguration of business processes to adapt to a new and rapidly changing
environment. Hence, in this work, we aim to ensure Web service instances execution continuation
according to the new protocol specifications imposed by changes occurring in enterprise environments.
To this end, we develop a formal technique that, on the one hand, enables the modeling of evolving
processes as RONs, and on the other hand, supports changes by deploying transformation rules
reflecting new specifications of processes. The main idea behind using RONs is the integration of
transition firing and rule-based net structure transformation of place–transition (PT) nets during the
evolution of Web services protocols. This can be achieved by the appropriate integration of token-
nets and token-rules in a high-level net model. The conceived framework allows migrating a large
spectre of active instances of the current service protocol. In fact, instead of considering running
instances in a systematic manner as migratable and not migratable ones, we force them to adapt to
the new requirements dictated by environment changes. The main benefits of this perception consist
of guaranteeing a maximum rate of migratable instances and avoiding loss of work induced by the
recovery from scratch of non-compatible instances.

The suggested method represents a new mechanism for tackling the issue of instance continuation
in the business protocol evolution context. We propose a paradigm shift based on reconfigurable
object nets (RONs). Based on such formal and sound tools, the conceived framework offers to
protocol managers the possibility to continue the execution of ongoing instances according to the
evolved protocol specifications. Whilst existing approaches for dynamic protocol changes impose
active instances to be compatible as accurately as possible with the initial service protocol, our
approach allows all active instances to be migrated by deploying the reachability graph that allows
service providers the ability to manage the constraints that drive the instances migration process.
Our contribution covers the following aspects:

•	 A formal verification of compliance criteria in order to ensure that instances migration does not suffer
from problems such as deadlocks, activities re-executions, or deletion of already started activities.

•	 A maximum coverage of instances to be migrated by exploiting the reachability graph.
•	 An operational and actionable framework for managing instances migration that exceeds

unsuccessful abstract and theoretical approaches.

Figure 1.
The challenge of managing dynamic business protocol evolution

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

4

Subsequently, the proposed approach adds value to the area of business protocol evolution. In fact,
when building and deploying the reachability graph of a Petri net model, properties of the modeled
system are performed through the marking paths from the initial marking to the target one. In this
perspective, the constructed reachability graph is exploited to calculate compatible conversations
that can be migrated to the new business protocol. Notably, in most of the existing approaches in
the literature, services’ active instances are managed and supported by users’ predefined migration
strategies (e.g., black and white), taking into account neither specific user needs nor complex migration
strategies. To illustrate the applicability and feasibility of our approach, various RONs are manipulated
in the paper, and the usage of the most suitable one for a specific evolution context is illustrated with
real examples. Our suggestion for managing changes and handling protocols evolution operates in
an incremental fashion.

First, we consider old and new service protocols as graphs, and we use graph transformation
techniques and tools to model these protocols as Petri nets. Then, we make various changes to the
initial service protocol (e.g., adding or removing activities by operating the adequate changes to the
initial service protocol specification). At this stage, the formal model of RONs plays a crucial role,
and the RON-Editor is deployed to simulate the business protocol evolution. This goal is reached
by considering two dimensions of RONs, the system level and the token level, and their associated
types of tokens: token-nets and token-rules. In the formal RONs model, token-nets are PT nets, while
token-rules are double pushout production rules.

Once changes are performed and modeled with RONs elements (token-nets and token-rules),
compatibility properties are taken into account as a discriminator factor to handle instances migration.
Hence, the concept of the reachability graph of the RONs is exploited to calculate the active instances
able to migrate to the evolved business protocol. Accordingly, to the work of (Ryu et al., 2007), in
our approach, we classify active instances into two kinds, i.e., migratable and non-migratable ones,
and we handle non-migratable instances by applying ad hoc protocols techniques. To achieve this
goal, double-pushout rules are used to realize a protocol adapter that handles the mismatches and
bridges the gap between old and new protocol versions. A real-world scenario (i.e., the Australian
working visa application service) of a Web service business protocol is used throughout this paper to
illustrate the proposed approach and to highlight the different facets supporting the formal concepts.

The remainder of this paper is organized as follows. After a literature review of the change
management and evolution problem, we present materials and methods used in this work. The
following section is dedicated to the results of managing changes by deploying RONs, and we
present an instances classification technique (migratable, non-migratable) and study the problem of
the non-migratable instances; this is followed by a discussion of our results. Finally, the conclusion
and potential perspectives of our work are drawn.

LITERATURE REVIEW

The problem of evolution management has been tackled from different aspects in a panoply of
research works. In fact, there have been various proposals regarding systematic approaches in many
research areas on data and software engineering to ensure more flexibility to information system,
as well as managing dynamic changes. In the business processes field, impacts of evolution have
been approached from perspectives such as the improvement of business process reconfiguration
and process instances migration. The application of changes to a certain service protocol, which is
recognized as the dynamic evolution problem in Web services environments, was addressed based
on three levels: the interface level, the business protocol level, and the instances level. The last two
are important in dynamic service evolution and instance migration management. Hence, in what
follows, we mainly focus on these aspects.

On the one hand, an important number of research works highlighted the subject of Web
services business protocols evolution (Azough et al., 2009; Benatallah et al., 2005; Liske et al., 2009;

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

5

Papazoglou, 2008; Ryu et al., 2007, 2008; Skogsrud et al., 2007; Y. Wang & Y. Wang, 2013). On
the other hand, another attempt to investigate the instance migration during protocol evolution by Y.
(Wang & Y. Wang, 2013) implemented a business protocol model based on a finite state machine. In
comparison, the automatic identification of migratable instances is achieved by the implementation of
model-based techniques. This approach identifies the instances that are unaffected by the changes and
easily migratable to the new protocol, while keeping the transparency of their migration to the evolved
version. The main focus here is the deployment of the compatibility and replaceability (Benatallah
et al., 2006) that are inevitable to safely identify migratable instances during the evolution of the
protocol scheme. These notions are used to conduct a close analysis of protocol evolutions impacts.

By using forward and backward compatibility principles, various compatibilities classes were
distinguished by Azough et al. (2009) and Liske et al. (2009) to specify the kinds of service instances
migration. Comparatively, the asynchronous and non-deterministic service protocols evolution
(Liske et al., 2009) extends the set of techniques used by Ryu et al. (2008); while Papazoglou (2008)
introduced shallow changes that are confined to either services or clients. However, deep changes
are changes where cascading effects and side effects take place.

In case a proper migration of active instances is not possible, adaptation techniques (Benatallah
et al., 2005; Kaminski et al., 2006; Yellin & Strom, 1997) could be deployed to ensure execution
continuation. In counterpart, (Benatallah et al., 2005) provides a technique to calculate protocol
mismatches and similarities in order to exploit the computed differences for generating adequate
adapters between different protocol versions. The computed adapters allow shifting old instances from
the old protocol version to the new one. Weber et al. (2008) suggested a set of adaptation patterns to
allow users structurally change process specifications and consequently facilitate version control for
business processes’ schema evolution. In opposition, Zhao and Liu (2013) provided a comprehensive
method for navigating process instances executions of changing process versions.

To manage change impact, Dam and Ghose (2015) proposed an approach for analyzing the
business protocol of a Web service by mining a version history of a business process model repository.
On the other side, by Mafazi et al. (2014), suggested another approach to handle changes that are
concurrently done by various stakeholders. The suggested approach provides solutions for the
on-the-fly conflict changes through the implementation of behavior consistency rules of business
processes. Similarly, Fdhila et al. (2015) proposed a generic change propagation approach focused
on refined process structures in order to ensure propagating changes in a decentralized manner in a
process choreography scenario.

Petri nets are mostly used in the modeling field, and a wide range of works implements this
abstract formalism as a tool for managing change impact analysis and for handling issues occurring
during systems evolution. Moreover, new extensions of this formalism were introduced to distinguish
concurrent and dynamic systems by suggesting various enhancements of the basic Petri net model
(Llorens & Oliver, 2004b; Badouel et al., 2003). In this context, Padberg and Kahloul (2018) classified
reconfigurable Petri nets into three types: reconfigurable low-level nets, reconfigurable stochastic nets,
and reconfigurable high-level nets. In addition, it is argued in the literature that various reconfigurable
Petri nets approaches can be classified into three principal classes: rewriting net systems-based
approaches, graph transformation-based approaches, and hybrid approaches.

Furthermore, changes and crises lead to rapid transformations to remote working and learning
modes and the need for e-commerce, education-related project development, and maintenance.
Moreover, an increase in internet traffic has a direct impact on infrastructure and software performance.
Fedushko et al. (2020) studied the problem of accurate and quick Web-project infrastructure issues,
bottleneck, and overload identification and explored methods for strategic management of Web
projects. Chang et al. (2019) suggested a reuse strategic decision pattern framework (RSDPF) based
on blending ANP and TOPSIS techniques, enabled by the OSM model with data analytics. J. Wang
et al. (2020) introduced three approaches to predict online conformance through the construction

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

6

of a classification model automatically based on the historical event log and the existing reference
process model.

As mentioned previously, an analysis of the state of the art covers a remarkable variety of
methods for managing change impacts induced by evolution needs. However, the efficiency and
performance of each proposed method will depend on the formalism used for specifying the protocol
model and execution traces. Therefore, a robust mechanism to model the migration of active instances
after protocols’ evolution is inevitable. Furthermore, the success of any approach will depend on
the formalism used. Before the presentation of our approach, we introduce in the next section the
necessary materials and methods to make this paper self-contained.

MATERIALS AND METHODS

Materials
This section introduces the preliminary basic notions and definitions, allowing a clear comprehension
of the paper, followed by a presentation of RONs and the motivations having led to using them in the
context of changes and evolution of dynamic systems. Below, we present the concepts of PT nets,
morphisms over PT nets, union, and transformations (Hoffmann et al., 2005; Kahloul et al., 2014).

Definition: PT Nets

A PT net is formally represented by a quadruplet P T e Post, ,Pr ,() , where T is a non-empty finite
set of transitions, P is a non-empty finite set of places, Pre (for pre-domain) and Post (for post-
domain) are the two mappings defined as Pr , :e Post T P→ ⊕ . The set PÅ denotes the set of finite
multi-sets over the set P (Hoffmann et al., 2005; Kahloul et al., 2014)

Definition: Morphisms Over PT Nets

A morphism between the two PT nets N T P e Post
1 1 1 1 1
= (), ,Pr , and N T P e Post

2 2 2 2 2
= (), ,Pr , is

a function f N N:
1 2
® . We have f f f

T P
= (), , such that: f T T

r
:
1 2
® and f P P

P
:
1 2
® are two

morphisms that map transitions into transitions and places into places, respectively (figure 2). The
expressions f

T
 and f

P
 satisfy: Pr Pre f f e

T P2 1
 = ⊕ and P Post f f ost

T P2 1
 = ⊕ .

Figure 2.
Morphisms on PT nets (Hoffmann et al., 2005; Kahloul et al., 2014)

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

7

Definition: Union of PT Nets (Pushout)
The union is a specific construction based on the morphisms defined over PT nets
N T P e Post
1 1 1 1 1
= (), ,Pr , , N T P e Post

2 2 2 2 2
= (), ,Pr , and I T P e Post= ()0 0 0 0

, ,Pr , with the two
morphisms f I N: ®

1
 and g I N: ®

2
. The net I denotes a common interface between N

1
 and

N
2

. The union of N
1
and N

2
 is the Net N T P e Post= (), ,Pr , , defined using the two morphisms

f N N' :
1
® and g N N' :

2
® . We write N N N

I
:

1 2
+ . The operator +

I
 is called the pushout

construction or the gluing operator.

Definition: Transformations of PT Nets (Double Pushout)
The transformations of PT nets, also called double pushout, are based on the PT gluing (or pushout)
construction. Let L K R, , and C be four PT nets. A transformation f N N:

1 2
® transforms the PT

net N
1
 into PT net N

2
 using the rule r L K R= (), , and the match m L N: ®

1
 iff we have the

double pushout in Figure 3.
In Figure 3, k k m c

1 2
, , , , and n are morphisms. Thus, the PT net C is called the context of the

transformation and it satisfies the following conditions:

1. 	 T T m T m k T
C T L T KT
� �= ()()∪ ()()1 1

\ ;

2. 	 P P m P m k P
C P L P KP
� �= ()()∪ ()()1 1

\ ;

3. 	 Pr Pre e
c TC
=

1
 (The relation Pre

C
 is the subset of Pre

1
which concerns only the set of

transitions: T
C

).
4. 	 Post Post

C TC
=

1
(The relation Post

C
 is the subset of Post

1
 which concerns only the set of

transitions: T
C

).

Furthermore, the incessant need to model and simulate dynamic systems, as well as to specify
and manage their changing properties, has been felt in different research areas (Padberg & Kahloul,
2018). To this end, the notion of reconfiguring Petri nets was introduced in the early nineties (Ehrig
et al., 1994), and it underwent levels of formalization by many researchers (Padberg & Kahloul,
2018). These abstract tools can be considered as a family of formal modeling techniques allowing a

Figure 3.
The double pushout mechanism (Hoffmann et al., 2005)

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

8

variety of Petri net types, such as: high-level nets, timed or stochastic nets, and object nets (Padberg
& Kahloul, 2018). Reconfigurable Petri nets consist of marked Petri nets, i.e., a net with a marking
and a set of rules that modifies the net’s structure at run-time when it is applied (Ehrig et al., 2007;
Ehrig & Padberg, 2004; Llorens & Oliver, 2004a; Prange et al., 2008). As a witness of the richness
and the relevance of the usefulness of RONs, they were deployed in various research and industry
areas (Padberg & Kahloul, 2018) and particularly in reconfigurable manufacturing systems (RMSes;
Kahloul et al., 2016), flexible manufacturing systems (Tarnauca et al., 2012), workflows in dynamic
infrastructures (Hoffmann et al., 2008), and concurrent systems (Llorens & Oliver, 2004b).

This interest in using RONs is motivated by their high level of expressiveness and ability to
specify constraints inherent to dynamic systems. From a specification perspective, RONs were
initially introduced as high-level nets with nets and rules as tokens (Biermann & Modica, 2008;
Hoffmann et al., 2005). The main constructions of graph transformations used in Petri nets are the
union (single pushout) and transformation (double pushout). The formulation of these operations uses
a set of morphisms over nets. In the following, we recall some definitions of RONs, and we highlight
their deployment for managing changes and transformations (Ehrig & Padberg, 2004; Kahloul et al.,
2014). To understand the various criteria of RONs, it is essential to mention that these formalisms
are based on graph transformation theory (Ehrig & Padberg, 2004). A RON model is a complex
structure, having, on the one hand, the token level, on which nets represent token-nets and double
pushout production rules express token-rules. On the other hand, it also includes the system level in
which we can distinguish two types of places depending on the system specification: net-places or
rule-places, i.e., it includes token-nets or token-rules, respectively (Kahloul et al., 2014). Nevertheless,
when transitions in the system level trigger the dynamic behavior over markings of the token-net,
they are considered as fire-transitions, which are expressed as follows.

A transition t from a net, in which t updates the marking of N by firing t when the latter is enabled.
A fire-transition requires a guard enabled t true() =



 (Kahloul et al., 2014). A new net computed using

the function: fire N t;() is produced by this fire-transition once it is fired (Kahloul et al., 2014). However,
when transitions trigger the reconfiguration behavior over the structure of the token-nets through the
application of token-rules, they describe transform-transitions as having the following parameters.

Let R p m� �= (); be a rule used for transforming a net, with p a PT net and m a morphism. To
be activated, the transform-transition mechanism supported by the rule R requires an applicability
constraint named the guard [applicable N R;()] (Kahloul et al., 2014). Hence, the resulting net having
a new structure defined through a function: transform N R;() is produced as the output of the
considered transform-transition function (Kahloul et al., 2014).

Given their semantic richness and their theoretical foundation, RONs have benefited from a
particular interest, both from the research community and from software firms. Nowadays, it is
observed that various providers offer free and downloadable software tools such as RON-Editor
(Biermann et al., 2007) and ReConnect (Ede et al., 2012) that are used to simulate and analyze RONs
models. Further, such tools allow the representation of the system functionalities, where the dynamic
at the micro-level and macro-level, the applied transformations’ rules, and the system’s configurations
set are represented. Moreover, RONs grant the ability to use reconfigurable manufacturing systems
(RMSes; Kahloul et al., 2014). Also, the application of graph transformation theory to a variety of
Petri net kinds: Algebraic high-level nets, PT nets, and colored Petri nets are some of the RON’s most
prominent features (Kahloul et al., 2014).

Presentation of the RON-Editor
To show the applicability and feasibility of the proposed approach, we implemented and experimented
with the RON-Editor (Biermann et al., 2007) tool. The RON-Editor (Biermann et al., 2007) is an
open-source software tool that provides useful functionalities for managing the life cycle of Petri net

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

9

models. Furthermore, it allows handling evolution rules of specified Petri nets by taking into account
occurring transformation rules. Thus, it offers protocol managers an efficient and easy environment
that facilitates the description of system evolution.

In the RON-Editor tool, business protocols are perceived as Petri nets (PT systems), and their
evolution is managed by specifying the set of transformation rules. Furthermore, the RON-Editor
supports the consistency of the RONs by ensuring that rules’ mappings fulfill the features of net
morphism and that RON places have correct token typing (Padberg & Kahloul, 2018). To realize
simulation scenarios, the RON-Editor contains an Attributed Graph Grammar engine (AGG; Graph
Grammar Group, n.d.). Also, it uses Eclipse Modeling Framework (EMF) and Graphical Editor
Framework (GEF) plug-ins developed as visual editors (Padberg & Kahloul, 2018). Reinforced with
the previous components, using RON-Editor allows for a large spectrum of functionalities, e.g.,
object nets and net transformation rules, as well as top-level RONs. Therefore, it enables updating
and managing the evolution of models as high-level transformations materialized by transitions to
be fired within the models in the RONs editor (Padberg & Kahloul, 2018)

Methods
This section presents the different aspects of our approach intended to manage the dynamic evolution
of business protocols and analyze change impact on active instances. In our approach, Web services
business protocols are formalized as Petri net models. This choice is motivated by the dynamicity
underlying the associated formal tools. Then, we deploy RONs for capturing changes as transformation
rules, and we formalize protocol evolution by deploying the formalized rules. Once changes are taken
into account, we describe the needed algorithms for classifying active instances into migratable and
non-migratable ones, and we specify algorithms for ensuring the migration of active instances of
Web services. More precisely, our approach for handling business protocol changes and ensuring
active instances continuation is articulated around four complementary steps.

1. 	 First, we present the case study that will be used throughout the paper to illustrate our approach,
and we formalize it by using the Petri net formalism.

2. 	 Based on the specified service protocol model, changes are handled by using RONs. Hence,
protocol operations for handling changes are seen as double pushout rules, and the underlying
modifications of the model are perceived as reconfigurations of the model. In this context, graph
transformation techniques and tools are used to express changes occurring during the evolution
of business protocols.

3. 	 In the third step, we exploit the concept of the reachability graph to calculate the set of instances
to be migrated to the new business protocol version. However, using RONs as dynamic structures
leads to a problem during the reachability graph construction phase. Thus, a new reachability
graph algorithm that allows for the analysis and verification of the RONs is proposed at this stage.

4. 	 We analyze the impact of protocol changes based on backward and forward compatibilities
properties. According to this analysis, we classify the ongoing instances into migratable and
non-migratable ones. Lastly, handling the issue of non-migratable instances is tackled by using
ad hoc protocols or adapter protocols. In this perspective, adequate algorithms are specified.

Presentation of the Case Study
To illustrate the proposed approach, we start by exposing a real-world example of an Australian working
visa application service inspired by the work of Ryu et al. (2008), which will be used through the
remainder of the paper to highlight different facets of the proposed approach. This service protocol is
exhibited in Figure 4, and the interpretation of the set of nodes in these token-nets is presented in Table 1.

The previous protocol can be deployed by the immigration department to manage working visa
applications for immigrants. It is worth noting that at any given time, tens of thousands of protocol

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

10

conversations (instances) are in an active state and each of which has reached a particular progression
level. However, many reasons can induce changes in the regulation governing the immigration
procedure. Consequently, the amendment of immigration laws may affect the visa application protocol

Table 1.
Interpretation of nodes in the Token-nets protocol

Places Transitions

Symbol Interpretation Symbol Interpretation

P0 Start T0 Check eligibility

P1 Eligible T1 Cancel

P2 Cancelled T2 Fill in application

P3 Application ready T3 Submit work experience

P4 Work experience submitted T4 Test English ability

P5 Lodged T5 Submit reference letter

P6 Checked T6 Checked approval

P7 P8 P9
P10 P11

Reviewed Processed Student
application ready Graduation
certificate submitted Student logged

T7 T8 T9 T10
T11

ReassessConfirmFill in application for overseas
student
Submit graduation certificateSubmit passport

P12 Submit reference letter T12 Check approval

T13 Report medical examination

Figure 4.
Token-net (TN1) for an Australia working visa application service

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

11

(Ryu et al., 2008). As an illustration, the new laws can stipulate that (i) after the expiration of a working
visa, if an applicant decides to reapply, he must submit an employer reference letter and the result
of a medical examination in order to be accepted and (ii) reviewing the result of the application is
no longer an option for the applicants. These changes cannot be delayed and must enter into force
immediately. Obviously, the continuation of active instances having started their interactions based on
the old protocol version is compromised, and a change impact analysis must be conducted to ensure
their continuation in the realm of the evolved protocol version. To achieve this goal, first of all, the
occurring changes must be handled and formalized in the new service protocol specification. The
next subsection is dedicated to this aspect.

Handling Changes by Reconfiguring RONs
As RONs are used in our approach to representing service protocols, thus the occurring changes
are perceived as a simple reconfiguration of these specifications acting as double pushout rules. To
this end, two modeling levels are to be distinguished in order to implement RONs in a manner that
can handle protocol evolution. First, the token-nets in the token level, defined as nets, allow for the
exhibition of the static structure as well as the dynamic behavior of the considered business protocol.
Further, the identification of the token-rules as double pushout rules conducts the reconfigurations of
the specifications expressed with PT nets. Second, at the system level, places are either rule-places
or net-places, depending on whether they include token-rules or token-nets, and transitions are fire-
transitions and transform-transitions (Kahloul et al., 2016).

To highlight our propose, we operate the same modifications as proposed by Ryu et al. (2008).

1. 	 Firstly, a place and a transition have been added: the new place ReferenceLetterSubmitted (P12)
is inserted after the place ApplicationReady (P3), and the transition ReportMedicalExamination
(T13) links the new place ReferenceLetterSubmitted (P12) to the Lodged one (P5).

2. 	 The second change consists of removing both the Reviewed place (P7) and the associated transition
Reassess (T7).

To update the service protocol in a fashion that meets the new specification of the visa application
service protocol, an evolved version that integrates the occurring changes must be redesigned. In
our context, changes in the Australian working visa application service require the definition of two
production rules leading to a target service protocol which is a consequence of the business protocol
reconfiguration. Moreover, a set of morphisms is necessary for constructing the two production rules.

In what follows, we focus on the modifications of the business protocol, and we specify the
underlying modifications as double pushout rules. For the Australian working visa application protocol,
changes to the initial service protocol are materialized with two production rules, as shown in Figure
5. As illustrated in the Figures, applying the pushout rules R1 and R2 ensures the transformation
of the initial token-nets TN1 to an evolved one TN2 , which will be in turn transformed by the
second rule R2 to realize to the target token-net TN 3 .

Activation of the Double Pushout Rule R1

The first double pushout rule is expressed with: R p m1� �= (), , where p L I R� , ,= ()� is composed of
three P T/ sub-nets (with L = left, I = Interface, and R = Right), and m is a morphism (see
Figure 5A). More formally, the transformation associated with the rule R1 is expressed with

TN TN
p m

1 2�

;

→
()

. This transformation involves the first reconfiguration of the service protocol from
token-nets TN1 of Figure 4 to the target token-nets TN2 of Figure 9. Figure 6 showcases this rule,
and it illustrates the double pushout mechanism which triggers the first reconfiguration of the token-
nets TN1 to the token-nets TN2 , according to the context C .

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

12

As it appears in Figure 6, the place ReferenceLetterSubmitted (P12) and the transition
ReportMedicalExamination (T13) are added to the right sub-net (R). The context C of Rule 1 , as
presented above, is depicted in Figure 7. For illustrative reasons, Figure 8 is a deep presentation of
the underlying two morphisms h

1
and h

2�
associated with the pushout rule R1 . Once the double

pushout construction of the rule R1 is applied to the initial protocol represented with the token-nets
of Figure 4, a resulting service protocol depicted in Figure 9 is obtained. It is worth recalling that the
resulting token-net of Figure 9 represents only an intermediate protocol version that handles changes
expressed by the production rule R1. This token-net will serve as input for the second production
rule R2 . Hereafter, we focus on the second rule R2 and its specifications.

Activation of the Double Pushout Rule R2

The second double pushout rule R2 is formalized as follows.
R p m2� �= ()′ ′; �where ′ ′ ′ ′= ()p L I R� � , , , consists to a three P T/ sub-nets, (with ¢L : left, ¢I :

Interface, and ¢R : Right) and m is a morphism (see Figure 5B). The transformation associated with

the rule R2 is expressed as TN TN
p m

2 3→
′ ′();

. In terms of formal specifications, the morphisms
associated with the rule R2 are h h h

1 2 11
' ' ', , , �h

12
’ , � �m �’c , ,¢ and ¢g , while �C’ expresses the context

of the rule (see Figure 5B). Figure 10 showcases the relationship between the different elements
′ ′ ′()L I R, , managed by the double pushout rule 2 . Once it is triggered, this rule allows the second

reconfiguration of the protocol by taking the token-net TN2 of Figure 9 as input, which will be
transformed into the target token-net TN 3 of Figure 11. (The context � ’C of the rule R2 and the
associated morphisms h h h

1 2 11
' ' ', , , h

12
' , � �m’c , ,¢ and ¢g are not illustrated for lack of space).

The System Level Net
As it is argued previously, changes in the protocol specifications are governed by the RONs model
of the system during the application of successive transformations. Two types of transitions in the
system level are to be distinguished: fire-transitions and transform-transitions. While a transform-
transition changes the structure of the token-net, the fire-transition one changes the marking of the
token-net. Figure 12 shows the relationships between the various fire-transitions, transform-transitions,
and the considered token-nets. As it appears in the figure, three net-places np np np1 2 3, , ,() containing
respectively (TN1 in Figure 4, TN2�in Figure 9, and TN 3 in Figure 11) the previous token-nets
form the system-kernel (see the rounded forms at the right side of Figure 12).

Figure 5.
An overview of the double pushout rules

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

13

Figure 6.
Double pushout of the rule R1

Figure 7.
The context C of the transformation based on the rule R1

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

14

As shown in the top of Figure 12, the first configuration of the reconfigurable system occurs
when the initial token-nets TN1 marks the net-place np1 . Then, the markings of TN2 and TN 3
are activated, respectively, through the application of the token-rules R R1 2,() in Figure 5.
Furthermore, it is observed in the Figure that two rule-places rp rp1 2,() , expressing, respectively,

Figure 8.
The morphisms h

1
 and h

2
 underlying the first rule R1

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

15

the two initial markings token-rules R R1 2,() , are highlighted. The figure illustrates that the final
PT net TN 3 is obtained by applying consecutive fire-transitions and transform-transitions, which
are triggered according to particular guards.

In our example of the working visa application service, both fire-transitions and transform-
transitions, must have guards: enabled t()



 for fire-transition and a guard applicable N R;()



 for

achieving transform-transition. Token-nets of the system (e.g., TN1) are linked to fire-transitions
(e.g., fire-transition one) via specific guards of type fire (e.g., fire� ,TN t1()). (See the top-left side of
the figure). On the other hand, the transform-transition allows shifting token-nets of the system from
an old configuration to an evolved one via transfom-transitions (e.g., transform-transition 1) under
constraints of applicable guards (e.g., � � ,applicable TN R1 1()), as depicted in Figure 12.

Managing Active Instance Migration
The third stage of our approach consists of managing active instances migration by exploiting the
previously conceived models. We must now focus on the issue of ensuring active instances continuation.
This is conducted by analyzing the ongoing instances. In this sense, both instances reached states,
and their historical achieved activities are examined. This exploration allows splitting instances into
two classes. Instances compatible with the operated changes are considered migratable, contrarily to
those instances that cannot meet changes and are considered non-migratable. For populating these
two instance classes with their suitable instances, the notions of backward and forward compatibility
are used as a foundation and guidelines (Ryu et al., 2008).

In our approach, the identification and classification of active instances into migratable and
non-migratable ones relies on the concept of a reachability graph for RONs. Such a graph allows
deploying the principles of compatibility and replaceability to distinguish the instances that can be
safely migrated when their protocol is modified. In this perspective, we operate in three incremental
stages. First, we highlight the usefulness of constructing the reachability graph of the evolved system,

Figure 9.
The resulting token-net TN2 of the reconfiguration based on R1

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

16

and then we elaborate on an algorithm for its generation. After that, we describe forward and backward
compatibilities algorithms to ensure the migration of active instances to the new protocol version,
according to the constructed reachability graph.

Generation of the RONs Reachability Graph
By using RONs for managing protocol evolution, the issue of managing active instances migration
is relegated to calculating the reachability graph of the protocol and then exploring it for filtering
migratable instances from non-migratable ones. Thereby, the reachability graph constitutes a “code of
good behavior” and a guideline that active instances must comply in order to continue their execution
in the realm of the new protocol. Consequently, instances that cannot meet the specification described
in the reachability graph cannot continue their execution and, thus, are considered non-migratable
ones. However, constructing such a graph is not an obvious task. In fact, in the context of ordinary

Figure 10.
Double pushout of the rule R2

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

17

Petri Nets, reachability graphs are constructed without any particular difficulties, but the problem
arises when dealing with formalisms having dynamic structures, such as RONs.

In what follows, we propose a detailed algorithm, named the reachability graph generator
algorithm (RGGA) for generating the reachability graph based on an initial RON introduced in input
and according to a set of transform-transitions (abbreviated as TT), as well as a set of fire-transitions
(abbreviated as FT). In the algorithm, vertices represent places and their markings, while edges allow
linking these vertices.
Algorithm 1: RGGA « The Reachability Graph Generator Algorithm »
Input: start
Output: vertices and edges of the reachability graph
begin
1.      vertices: = new ArrayList<>();
2.      vertices.add(start);
3.      edges = new HashMap<>();
4.      List <HighLevelPetri> q: = new ArrayList<>();
5.      q.add(start);
6.      HighLevelPetri curr: = null;

Figure 11.
The resulting token-net TN3 of the reconfiguration based on R2

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

18

7.      while (!q.isEmpty()) do
8.      curr: = q.remove(0);
9.      Set <String> firables: = curr.getFirable().keySet();
10.      if (!firables.isEmpty()) then
11.      List <String[]> el: = edges.get(curr.getName());
12.      if (el == null) then
13.      edges.put(curr.getName(), new ArrayList <> ());
14.      endif
15.      endif
16.      HighLevelPetri copy: = null;
17.      for (String hlt: firables) do
18.      copy: = curr.copy();
19.      HighLevelTrans t: = copy.getFirable().get(hlt);
20.      if (t instanceof FireHLTrans) then
21.      int fiSize: = ((FireHLTrans) t).getFi().size();
22.      for (int i = 0; i < fiSize; i++) do
23.      copy: = curr.copy();
24.      t: = copy.getFirable().get(hlt);
25.      List <Transition> fi: = ((FireHLTrans) t).getFi();
26.      for (int j = 0; j < i; j++) do
27.      fi.remove(0);
28.      endfor
29.      String n: = fi.get(0).getName();
30.      t.fire();

Figure 12.
The RON model of the system

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

19

31.      HighLevelPetri id: = contains(copy);
32.      List <List<String>> path: = new ArrayList<>();
33.      curr.getPath().forEach(l->path.add(new
ArrayList<>(l)));
34.      path.forEach(l->l.add(n));
35.      if (id == null) then
36.      copy.setName(“HLP”+vertices.size());
37.      copy.setPath(path);
38.      copy.setStartIndex(curr.getStartIndex());
39.      vertices.add(copy);
40.      q.add(copy);
41.      edges.get(curr.getName()).add(new String[]{/*t.
getName()+SEP+*/n, copy.getName()});
42.      else
43.      id.getPath().addAll(path);
44.      edges.get(curr.getName()).add(new String[]{/*t.
getName()+SEP+*/n, id.getName()});
45.      endif
46.      fi.remove(0);
47.      endfor
48.      else
49.      t.fire();
50.      HighLevelPetri id: = contains(copy);
51.      List <List<String>> path: = new ArrayList<>();
52.      curr.getPath().forEach(l->path.add(new
ArrayList<>(l)));
53.      int st: = Integer.parseInt(t.getName().charAt(2)+”“);
54.      if (id == null) then
55.      copy.setName(“HLP”+vertices.size());
56.      copy.setPath(path);
57.      copy.setStartIndex(st);
58.      vertices.add(copy);
59.      q.add(copy);
60.      else
61.      id.setStartIndex(st);
62.      if (path.size() > id.getPath().size())then
63.      id.setPath(path);
64.      endif
65.      endif
66.      endif
67.      endfor
68.      endwhile
end

Description of the Algorithm RGGA
All the graph components are RONs with different token-net positions and markings (lines 1–2).
The initial RON start and having the name HLP0 is introduced as input of the algorithm RGGA. At
first, the algorithm prepares the components (each vertex) of the graph. The algorithm uses a queue
to explore the children of a node (lines 5–6), and it stores the vertices in a list whenever a new one
is discovered, while edges are stocked in a map (lines 3–4). The key of this map is the name of a

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

20

vertex, while the value is a list of child vertices that are generated by applying a transition from this
parent node.

The RGGA algorithm starts without any vertex in the queue, except for the initial RON one
start (lines 3–4). During the algorithm progression, new vertices are added to and removed from
the queue until it is empty. If this last condition is satisfied, the algorithm stops (the big loop from
line 7 to the end). The algorithm takes the first element (RON) in the queue and removes it (line 8).
This element is the variable curr in the algorithm. Now, all the fireable transitions of that RON are
found (line 9) independently from their type (transform or fire transitions). This list of transitions
is executed (fired) one by one (lines 17–30). After each transition firing, a new RON is obtained
(line 30). At this stage, the parent RON curr and the new child RON copy are created. Therefore,
two possible cases are to be distinguished, according to the fired transition type having generated a
copy: a fire-transition (FT) or transform-transition (TT). In the first case (FT), the copy is tested to
distinguish if it is a new vertex or if it already exists in the vertices set. In the case where it is a new
one, it is added to the vertices set (lines 35–41) and to the queue structure (line 40). Furthermore, it
is added the edge from curr to copy fired by this FT to the map of edges (line 41). However, if copy
already exists in vertices (line 48), it is only added to the edge from curr to copy, which is fired by
this FT to the map of edges (line 44). Then, all possible paths (fired transition sequence) that lead
to curr from the root vertex start (line 43) are checked, concatenated in the new transition for each
path (line 44), and stored in copy. Now, if the transition is transform-transition (TT), here again, we
examine if copy is a new vertex (line 54) or an already existing one in the vertices set (line 60). If it
is a new one, it is added to the vertices set (line 58) and to the queue (line 59) without adding edges.
In the case where copy is in the vertices, no changes will be added. As with the FT case, the paths
inherited from curr are set (line 63).

Ensuring Forward Compatibility
In the context of business protocol evolution, forward compatibility refers to the ability for clients
of active conversations to continue interacting correctly with a given service after it is migrated to
the new protocol (Ryu et al., 2008). Such a concept is crucial for conducting change impact analysis.
Based on our previous framework articulated on the RONs structures and their associated reachability
graph, we present below an algorithm for ensuring forward compatibility of active instances.
Algorithm 2: FComp (forward compatibility)
Input: List Place ps, Petri net, List Rule chain

Output: decision on forward compatibility of instances
begin
Petri copy: = net.copy();
for (Rule r: chain)do
r.apply(copy);
endfor
List <Place> nextParam: = new ArrayList<>();
for (Place p: ps) do
List <Transition> ts: = new ArrayList<>();
net.getTransitions().forEach(t->{boolean exist = t.getPre().
stream().anyMatch(l->l.getP().getName().equalsIgnoreCase(p.
getName()));
if (exist)then ts.add(t);});
if (ts.isEmpty()) then
boolean comp: = copy.getPlaces().stream().anyMatch(pl->pl.
getName().equalsIgnoreCase(p.getName()));
if (!comp)then
return false;

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

21

endif
else continue;
endif
for (Transition t: ts) do
Transition tn: = copy.getTransitions().stream().filter(tr- >tr.
getName().equalsIgnoreCase(t.getName())).findFirst().orElse(null);
if (tn == null || !tn.getPre().stream().anyMatch(l->l.getP().
getName().equalsIgnoreCase(p.getName())))then
return false;
else
for (Link lnk: t.getPost()) do
if (!tn.getPost().stream().anyMatch(l->l.getP().getName().
equalsIgnoreCase(lnk.getP().getName())))then
return false;
endif
nextParam.add(lnk.getP());
endfor
endif
end for
end for
return nextParam.isEmpty(?true:isForwardComp(nextParam, net,
chain);
end

Description of the Algorithm Fcomp
This algorithm aims to check rules contained in the parameter chain when they are applied to the
Petri net designated with net. First, the algorithm creates a copy of the original Petri net (parameter
net) and applies all the rules in the list named chain (line 1), and the resulting modified net is called
copy (lines 2-4). Now, the two nets (net and copy) are compared place by place and transition by
transition. During this comparison, each place existing in the first Petri net net should also exist in
the copy one. The same verifications are conducted for transitions of the two Petri nets. In the case
in which the comparison induces a mismatch, the considered Petri nets (net and copy) are considered
incompatible. However, not all places and transitions are examined. In fact, we are only interested in
the marked places and all structures of the Petri net outgoing after the current position, i.e., forward
compatibility. To do that, a third parameter named ps is introduced in the algorithm. It captures the
marked places during the first call of the function, and it represents the list of places starting from
the parameter net (line 6). At this stage, the Fcomp algorithm checks if each transition in ts exists in
the Petri net copy (line 8). In the case in which this test is negative, the algorithm directly returns
false (line 13). Otherwise, it gets all the POST places from it and adds them to a list (variable “List
Place nextParam”). Now, if the algorithm terminates all the ts elements without returning any

false, this means that the examined region in the two nets (net and copy) is a compatible one. Since
it is the case, the algorithm continues checking the next region, which begins from the places contained
in the list nextParam, and the algorithm operates a recursive call and restarts from this new list (line
31).

Ensuring Backward Compatibility
After having ensured migration to the new protocol, the backward compatibility class checks if the
achieved backward path of an instance (also called history path) is compatible in the context of the
new protocol (Ryu et al., 2008). Based on our previous modeling, we describe an algorithm for
performing this compatibility type.

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

22

Algorithm 3 BComp (backward compatibility)
Input: History h, List <Rule> chain
Output: decision on backward compatible
begin
Petri cp: = h.getEnd().copy();
for (Rule r: chain) do
r.apply(cp);
endfor
for (Place m: cp.getMarked()) do
m.setTokens(0);
endfor
for (Place m: h.getStart().getMarked()) do
Place toM = cp.getPlaces().stream().filter(pl->pl.getName().
equalsIgnoreCase(m.getName())).findFirst().orElse(null);
if (toM == null)then
return false;
endif
toM.setTokens(m.getTokens());
endfor
int indS: = -1;
for (int i = 0; i < vertices.size(); i++) do
HighLevelPetri hlp: = vertices.get(i);
for (HighLevelPlace <Petri> hlplace: hlp.getNetHolders()) do
for (Petri p: hlplace.getElems()) do
if (p.equals(cp)) then
indS: = i;
break;
endif
endfor
if (indS >= 0)then
break;
endif
endfor
if (indS >= 0)then
break;
endif
endfor
HighLevelPetri st: = vertices.get(indS);
Petri startCopy: = h.getStart().copy();
Map <String, List<Rule>> trRule: = st.transRuleMap();
for (String ring: h.getTransSeq()) do
String[] trs: = ring.split(SEP);
if (trs[0].startsWith(“TT”)) then
Rule toEx: = trRule.get(trs[0]).get(0);
toEx.apply(startCopy);
else
startCopy.getTransitions().stream().filter(tr->tr.getName().
equalsIgnoreCase(trs[0])).findFirst().get().fire();
endif
List <String[]> arcs: = edges.get(st.getName());

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

23

String[] arc: = null;
for (String[] a: arcs) do
if (a[0].equalsIgnoreCase(ring)) then
arc: = a;
break;
endif
endfor
if (arc = = null)then
return false;
endif
st: = vertices.get(Integer.parseInt(arc[1].substring(3, arc[1].
length())));
for (HighLevelPlace <Petri> hlplace: st.getNetHolders())do
if (!hlplace.getElems().isEmpty()) then
List <Place> nMark: = hlplace.getElems().get(0).getMarked();
for (Place m: startCopy.getMarked()) do
Place nm = nMark.stream().filter(pl->pl.equals(m)).findFirst().
orElse(null);
if (nm == null || nm.getTokens() != m.getTokens())then
return false;
endif
endfor
endif
endfor
end for
return true;
end

Description of the Bcomp Algorithm
The Bcomp algorithm aims to ensure that a sequence of transitions expressing the historical achieved
activities in the former protocol is still available in the new specification of the Petri net after its
improvement with the list of rules called chain. First, the evolved Petri net called cp is obtained by
making a copy of the current instance in the history (called h.getEnd(); lines 2–4) and after having
applied the rules set (chain; line 1). Now, the generated reachability graph is explored in order to
search the variables vertices and edges in the initial Petri net leading to cp. If this exploration results
in a positive conclusion, then the obtained sub-net is called st (line 33). In this case, we capture the
real start instance from h (called startCopy; line 34). At this stage, two available nets are available: the
real start instance startCopy and the new protocol start instance st. The algorithm takes the transition
sequence of the history (variable h.getTransSeq()) and applies it to startCopy one by one (line 36).
After each activation of the transition t to startCopy, the marking of this last one is modified, and it
is compared to the child st coming from the edge t (from variable edges; line 44). If this comparison
leads to a difference between the examined two paths, it is induced that the new protocol loses
some places or transitions having already existed in the former version. In such a situation, a false
conclusion is produced in the output, and the algorithm terminates its execution. Otherwise, the
algorithm continues its progression by handling the whole transition sequence until it encounters an
incompatibility situation, and it returns a true result (line 68).

The previous algorithms allow filtering migratable and non-migratable instances. Furthermore,
they allow extracting the corresponding place reached by each migratable instance after its transfer
to the new protocol. These places are called replaceable places. Since the name of the corresponding
places may be altered by the service manager, a possible solution to this problem is suggested by Ryu

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

24

et al. (2008). This can lead to finding a place with an adequate corresponding name or concluding that
the manager maps the new corresponding place. In the absence of the aforementioned scenarios, it is
concluded that the considered place was deleted in the new process after having operated its evolution.

Handling Non-Migratable Instances
As was argued previously, active instances of an evolved protocol cannot be migrated to the new
protocol version. Following the filtration of instances, satisfying forward and backward compatibilities
by exploiting the previous algorithms, the remaining instances that cannot satisfy the compatibility
types are managed in a special fashion. Using the ad hoc protocol is one of the most known approaches
in the literature to manage non-migratable instances. Protocol managers must specify ad hoc protocols
to ensure instances continuation and allow bridging the gap between the need for specifying the
occurring changes per the new protocol and aims to guarantee the migration of a broad spectrum
of active instances. By using ad hoc protocol, active non-migratable instances can continue their
interaction on the evolved protocol as they are interacting with the old one. However, specifying
ad hoc protocols is a challenge that needs to capture both protocols’ similarities and mismatches.
Nevertheless, based on our framework articulated on RONs for representing service protocols and
their associated pushout rules for managing changes, the concern of specifying ad hoc protocols is
approached in a more formal manner. In this sense, ad hoc production rules are conceived initially
and then are used to produce the related ad hoc protocol. In fact, modeling and specifying ad hoc
protocols is reduced to managing ad hoc production rules, and it is achieved transparently.

Figure 13 below depicts an ad hoc production rule. As it is shown in the figure, this production
rule specification stipulates that the transition T13 (report medical examination) and the place P14
(confirmed) are inserted before the final place P8 (processed) by using a double pushout rule. By doing
that, a gateway is established in the ad hoc protocol description. It ensures avoiding the production
of future execution exceptions and run-time errors.

The previous pushout rule aims to handle service evolution requirements of the initial protocol of
the Australian visa application and the migration needs for non-migratable instances. More precisely, it is
used to elaborate the ad hoc protocol. As it appears in Figure 14, the resulting ad hoc protocol will serve
to ensure the continuation of non-migratable instances of the initial Australian visa protocol in Figure 4.

RESULTS

This section exposes the results of the implementation of our approach. We start by presenting various
scenarios describing the simulation of the Australian working visa application protocol and its

Figure 13.
Ad hoc production rule for the Australian visa protocol

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

25

evolution. Also, we depict some migration results. The Australian visa application protocol used in
this paper and its related transformation rules were implemented and modeled in the RON-Editor
tool as Petri net. As shown in Figure 15, the transformation rule � �R1 triggered the reconfiguration
process of the token-net TN1 of Figure 4 to the token-net TN2 of Figure 9. Once the transformation
rules were applied to the initial Petri net, the resulting token-net TN1 was obtained, as shown in
Figure 16. Moreover, Figure 17 below shows the system-level net implemented in the RON-Editor.

Once the Australian working visa protocol was implemented in the RON-Editor and adequate
transformations were performed, the active instances migration process could be triggered. Then
experimental results were conducted. Furthermore, Figure 18 represents the results of the management
of non-migratable (incompatible) instances.
vertex count: 38 \% we have 38 vertices
edge count: 35 \% we have 35 edges

Figure 14.
The ad hoc protocol

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

26

(HLP0, TT1, HLP1)
(HLP0, FT1, HLP2)
(HLP1, TT2, HLP3)
(HLP1, FT2, HLP4)
      

(HLP34, FT3, HLP36)
(HLP35, TT2, HLP37)

Figure 15.
The transformation rule R1

Figure 16.
The Token-Net TN1

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

27

Figure 17.
The system level net (the RON model)

Figure 18.
Managing non-migratable (incompatible) instances

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

28

HLP0: < <
NP1:[TN1:[P0:1,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P7:0,P8:0,P9:0,P10:0
,P11:0,],],
NP2:[],
NP3:[], > >

HLP1: < <
NP1:[],
NP2:[TN1:[P0:1,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P7:0,P8:0,P9:0,P10:0
,P11:0,P12:0,],],
NP3:[], > >

HLP2: < <
NP1:[TN1:[P0:0,P1:1,P2:0,P3:0,P4:0,P5:0,P6:0,P7:0,P8:0,P9:0,P10:0
,P11:0,],],
NP2:[],
NP3:[], > >

HLP3: < <
NP1:[],
NP2:[],
NP3:[TN1:[P0:1,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P8:0,P9:0,P10:0,P11:
0,P12:0,],], > >
      

HLP35: < <
NP1:[],
NP2:[TN1:[P0:0,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P7:1,P8:0,P9:0,P10:0
,P11:0,P12:0,],],
NP3:[], > >

HLP36: < <
NP1:[],
NP2:[],
NP3:[TN1:[P0:0,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P8:1,P9:0,P10:0,P11:
0,P12:0,],], > >

HLP37: < <
NP1:[],
NP2:[],
NP3:[TN1:[P0:0,P1:0,P2:0,P3:0,P4:0,P5:0,P6:0,P8:0,P9:0,P10:0,P11:
0,P12:0,] > >

DISCUSSION

Change management discussions in the research literature are restricted to managing simple operations,
consisting only of adding and removing states and messages (Azough et al., 2009; Benatallah et al.,
2005; Liske et al., 2009; Papazoglou, 2008; Ryu et al., 2007, 2008; Skogsrud et al., 2007; Y. Wang
& Wang, 2013). Furthermore, only strict compatibility scenarios were addressed, and migration is
conditioned by obligation rules that the running instances must satisfy to be migrated to the new
protocol version. Thus, a major deficiency of the cited contributions consists of reducing protocol

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

29

compatibility to its obvious case (strict compatibility). Although Khebizi et al. (2017) proposed a
declarative language to manage protocol evolution by specifying a set of migration patterns, the
proposed framework appears very rigid and far from a concrete implementation.

In our approach, we ensure the junction between the formal aspect based on the RONs formalism
and the practical aspect articulated on the reachability graphs and ad hoc production rules. On the one
hand, old and new business protocols are modeled as Petri nets, and protocol evolution is perceived
as a set of transformation rules. On the other hand, after protocol changes, RONs are used to handle
the compatibility properties, and the reachability graph is exploited to ensure instance migration.

Furthermore, in our approach, we handle the sub-set of non-migratable instances that do not
comply with the evolved protocol specification. Instead of using complicated ad-hoc protocols, as
proposed by Benatallah et al. (2005), we deal with non-migratable instances by generating ad hoc
production rules. We recall that in our approach RONs and the reachability graph are used as the main
pillars to perform the progression of active instances according to the new protocol version. Notably,
the analysis of the reachability graph of the RONs allows for effectively distinguishing migratable
instances from non-migratable ones by specifying double push-out rules. The previously described
algorithm RGGA allows for the construction of such a reachability graph, and the algorithms FComp
and BComp are used to ensure, respectively, forward and backward compatibility properties.

From a practical point of view, as the RON-Editor allows basic functionalities for creating object
nets and transformation rules, protocol evolution is expressed as a set of transitions (i.e., double
pushout rules) to be fired in the RONs editor. Hence, once the reachability graph has been built, it
is used to identify and transfer the migrating instances to the new version of the protocol. However,
non-migratable instances are managed by deploying ad hoc production rules.

To evaluate the applicability of the proposed approach and to assess its relevance, we examine
its effectiveness in a real-world scenario related to the Australian working visa application service.
First, the associated service protocol is created in the RON editor as a Petri net model, and a synthetic
instances dataset containing 5,000 instances was randomly generated and introduced as input of the
system. Then, we operated various changes to the initial protocol description by adding or removing
places and transitions. Such changes are expressed in the editor as transformation rules. After that,
we deploy the previous reachability graph generator algorithm RGGA to generate the reachability
graph of the visa protocol. Then, we analyze the impact of protocol changes based on backward and
forward compatibilities properties and according to Fcomp and Bcomp algorithms.

The experimental results show that around 70% of active instances satisfy the backward or forward
compatibility constraints and, consequently, are transparently migrated to the new protocol version.
This important rate of migratable instances is justified by the low degree of change operations made
on the protocol schema. However, for the remaining non-migratable instances (i.e., 30% of active
instances), we apply the ad hoc protocol techniques by defining specific ad hoc production rules in
the RON editor. For more flexibility in the proposed framework, the protocol manager enabled to
define and customize his own context-specific migration rules that map old instances to new ones.
This task is accomplished by specifying ad hoc production rules to be exploited in the RON editor
for managing non-migratable instances.

We are convinced that giving the possibility to users to specify their own migration rules reinforces
and improves the proposed conceptual framework. Indeed, more flexible migration strategies can be
developed and configured by users when managing instances migration. It is worth noting that even
though we consider only the business protocols of the Australian visa protocol during our experiment
process, the principles proposed in our approach remain valid and can be applied to any other type
of business process.

In this section, we discuss the results of our experiment. First, the screenshot in Figure 15 depicts
two different parts. The first window, at the left of the figure, exposes the LHS expressing the Petri
net N1 , whereas the RHS represents the Petri net TN2 . Furthermore, Figure 16 shows the net-places
np1 , the system net, the set of reconfiguration rules, as well as the object nets which were added by

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

30

the user. Notably, Figure 17, there are two rule-places rp rp1 2, containing, respectively, two token-
rules R R1 2,() as mentioned in the initial Figures 5 (a) and 5 (b). In addition, there are three net-places
np np1 2, and np3 handling, respectively, the three token-nets TN TN TN1 2 3, , ,() as presented
previously in (see Figures 4, 9, and 11). The screenshot also exhibits three fire-transition and a
transform-transition 1 (in green color), which is enabled. It is worth noting that, as managing
compatible instance migration can be operated with no particular difficulties, in our experimental
process, the focus is made on incompatible ones needing specific attention.

Based on the forward and backward compatibilities principles, three classes of incompatible
conversations are distinguished.

•	 Conversations with an incompatible history and a compatible forward path,
•	 Conversations with a compatible history and an incompatible forward path, and
•	 Conversations with both an incompatible history and incompatible forward path.

As it can be noted in Figure 18, an excerpt showing some migration results is depicted. The third
group contains two separate execution paths. The first one expresses incompatible conversations with
a transition path T0.T2.T5 and the second one is T0 T2 T5 T6.

CONCLUSION

Dynamic business protocol evolution is a crucial aspect in organizations evolving in dynamic
and changing environments that are permanently constrained to update their business processes.
Consequently, managing active instance migration after a business process evolution is a challenging
issue for which both industrial and academic stakeholders have suggested many systematic approaches
and techniques. In this work, a new approach based on RONs and their associated transformation
rules are proposed to model service protocols and manage their evolution. The reachability graph of
the evolved Net is constructed and exploited as a cornerstone to analyze the impacts of changes. The
conceived framework allows handling instances migration to the new protocol version by exploiting
the reachability graph of RONs. Furthermore, based on the Ron formalism and its properties, we
can distinguish which conversations can be migrated to a new protocol when an old one has been
changed. Finally, we thoroughly examined a real-world case study (the business protocol for the
Australian working visa application service), and the approach is simulated and experimented with
by using the RON-Editor tool.

As perspectives of our future work, we plan to deploy and implement the proposed approach to
large scenarios of protocols while constructing suitable reconfigurable Petri nets in the context of
business protocol evolution, such as e-commerce processes, e-learning, and e-health, and to analyze
the related difficulties and impacts. Also, we plan to examine the performance of the conceived
framework regarding the complexity of the process structure (the number of split and join constructs)
and the number of active instances. As another possible orientation, we plan to focus on the data
aspect by considering changes impacts on manipulated data and their consistency.

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

31

REFERENCES

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web services. Springer Berlin Heidelberg.

Azough, A., Coquery, E., & Hacid, M.-S. (2009). Supporting Web service protocol changes by propagation.
2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology,
438-441. doi:10.1109/WI-IAT.2009.76

Badouel, E., Llorens, M., & Oliver, J. (2003, June). Modeling Concurrent Systems: Reconfigurable Nets. In
PDPTA (pp. 1568-1574). Academic Press.

Benatallah, B., Casati, F., Grigori, D., Nezhad, H. R. M., & Toumani, F. (2005). Developing adapters for web
services integration. Advanced Information Systems Engineering: 17th International Conference, CAiSE 2005,
Porto, Portugal, June 13-17, 2005. Proceedings, 17, 415–429.

Benatallah, B., Casati, F., & Toumani, F. (2006). Representing, analysing and managing Web service protocols.
Data and Knowledge Engineering, 58(3), 327–357.

Biermann, E., Ermel, C., Hermann, F., & Modica, T. (2007). A visual editor for reconfigurable object nets based
on the ECLIPSE graphical editor framework. Arbeitsberichte aus dem Arbeitsberichte aus dem Fachbereich
Informatik, 2.

Biermann, E., & Modica, T. (2008). Independence analysis of firing and rule-based net transformations in
reconfigurable object nets. Electronic Communications of the EASST, 10.

Chang, V., Abdel-Basset, M., & Ramachandran, M. (2019). Towards a reuse strategic decision pattern framework:
From theories to practices. Information Systems Frontiers, 21(1), 27–44. Advance online publication. doi:10.1007/
s10796-018-9853-8

Dam, H. K., & Ghose, A. (2015). Mining version histories for change impact analysis in business process model
repositories. Computers in Industry, 67, 72–85.

Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., & Ermel, C. (2007). Independence of net transformations and
token firing in reconfigurable place/transition systems. In J. Kleijn & A. Yakovlev (Eds.), Petri nets and other
models of concurrency: ICATPN 2007 (Vol. 4546, pp. 104–123). Springer Berlin Heidelberg. doi:10.1007/978-
3-540-73094-1_9

Ehrig, H., & Padberg, J. (2004). Graph grammars and petri net transformations. In J. Desel, W. Reisig, & G.
Rozenberg (Eds.), Lectures on concurrency and Petri nets: Advances in Petri nets (pp. 496–536). Springer Berlin
Heidelberg. doi:10.1007/978-3-540-27755-2_14

Ehrig, H., Padberg, J., & Ribeiro, L. (1994). Algebraic high-level nets. In H. Ehrig & F. Orejas (Eds.), Recent
trends in data type specification (pp. 188–206). Springer Berlin Heidelberg. doi:10.1007/3-540-57867-6_11

Fdhila, W., Indiono, C., Rinderle-Ma, S., & Reichert, M. (2015). Dealing with change in process choreographies:
Design and implementation of propagation algorithms. Information Systems, 49, 1–24.

Fedushko, S., Peráček, T., Syerov, Y., & Trach, O. (2021). Development of methods for the strategic management
of Web projects. Sustainability, 13(2), 742. doi:10.3390/su13020742

Fedushko, S., Ustyianovych, T., Syerov, Y., & Peracek, T. (2020). User-engagement score and SLIs/SLOs/SLAs
measurements correlation of e-business projects through big data analysis. Applied Sciences (Basel, Switzerland),
10(24), 9112. doi:10.3390/app10249112

Graph Grammar Group. (n.d.). AGG: The Homebase. Retrieved August 10, 2020, from https://www.user.tu-
berlin.de//o.runge/agg/index.html

Hoffmann, K., Ehrig, H., & Mossakowski, T. (2005). High-level nets with nets and rules as tokens. In G. Ciardo
& P. Darondeau (Eds.), Applications and theory of Petri nets 2005 (Vol. 3536, pp. 268–288). Springer Berlin
Heidelberg. doi:10.1007/11494744_16

Hoffmann, K., Ehrig, H., & Padberg, J. (2009). Flexible modeling of emergency scenarios using reconfigurable
systems. Electronic Communications of the EASST, 12.

http://dx.doi.org/10.1109/WI-IAT.2009.76
http://dx.doi.org/10.1007/s10796-018-9853-8
http://dx.doi.org/10.1007/s10796-018-9853-8
http://dx.doi.org/10.1007/978-3-540-73094-1_9
http://dx.doi.org/10.1007/978-3-540-73094-1_9
http://dx.doi.org/10.1007/978-3-540-27755-2_14
http://dx.doi.org/10.1007/3-540-57867-6_11
http://dx.doi.org/10.3390/su13020742
http://dx.doi.org/10.3390/app10249112
https://www.user.tu-berlin.de//o.runge/agg/index.html
https://www.user.tu-berlin.de//o.runge/agg/index.html
http://dx.doi.org/10.1007/11494744_16

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

32

Kahloul, L., Bourekkache, S., & Djouani, K. (2016). Designing reconfigurable manufacturing systems using
reconfigurable object Petri nets. International Journal of Computer Integrated Manufacturing, 29(8), 889–906.
doi:10.1080/0951192X.2015.1130262

Kahloul, L., Chaoui, A., Djouani, K., Bourekkache, S., & Kazar, O. (2014). Using High Level Nets for the Design
of Reconfigurable Manufacturing Systems. In ADECS@ Petri Nets (pp. 1-19). Academic Press.

Kaminski, P., Müller, H., & Litoiu, M. (2006). A design for adaptive Web service evolution. Proceedings of the 2006
International Workshop on Self-Adaptation and Self-Managing Systems, 86–92. doi:10.1145/1137677.1137694

Khebizi, A., Seridi-Bouchelaghem, H., Benatallah, B., & Toumani, F. (2017). A declarative language to support
dynamic evolution of web service business protocols. Service Oriented Computing and Applications, 11(2),
163–181. doi:10.1007/s11761-016-0204-7

Liske, N., Lohmann, N., Stahl, C., & Wolf, K. (2009). Another approach to service instance migration. In B. J.
Krämer, K.-J. Lin, & P. Narasimhan (Eds.), Service-oriented computing: ICSOC 2007 (Vol. 4749, pp. 607–621).
Springer Berlin Heidelberg. doi:10.1007/978-3-642-10383-4_44

Llorens, M., & Oliver, J. (2004a). Introducing structural dynamic changes in Petri nets: Marked-controlled
reconfigurable nets. In F. Wang (Ed.), Automated technology for verification and analysis (Vol. 3299, pp.
310–323). Springer Berlin Heidelberg. doi:10.1007/978-3-540-30476-0_26

Llorens, M., & Oliver, J. (2004b). Structural and dynamic changes in concurrent systems: Reconfigurable Petri
nets. IEEE Transactions on Computers, 53(9), 1147–1158. doi:10.1109/TC.2004.66

Mafazi, S., Mayer, W., & Stumptner, M. (2014). Conflict resolution for on-the-fly change propagation in business
processes. Proceedings of the Tenth Asia-Pacific Conference on Conceptual Modelling, 154, 39–48.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541–580.
doi:10.1109/5.24143

Padberg, J., Ede, M., Oelker, G., & Hoffmann, K. (2012). Reconnet: a tool for modeling and simulating with
reconfigurable place/transition nets. Electronic Communications of the EASST, 54.

Padberg, J., & Kahloul, L. (2018). Overview of reconfigurable Petri nets. In R. Heckel & G. Taentzer (Eds.),
Graph transformation, specifications, and nets (Vol. 10800, pp. 201–222). Springer International Publishing.
doi:10.1007/978-3-319-75396-6_11

Papazoglou, M. P. (2008). The challenges of service evolution. Proceedings of the 20th International Advanced
Information Systems Engineering, 5074, 1–15.

Prange, U., Ehrig, H., Hoffmann, K., & Padberg, J. (2008). Transformations in reconfigurable place/transition
systems. In P. Degano, R. De Nicola, & J. Meseguer (Eds.), Concurrency, graphs and models (Vol. 5065, pp.
96–113). Springer Berlin Heidelberg. doi:10.1007/978-3-540-68679-8_7

Ryu, S. H., Casati, F., Skogsrud, H., Benatallah, B., & Saint-Paul, R. (2008). Supporting the dynamic evolution
of Web service protocols in service-oriented architectures. ACM Transactions on the Web, 2(2), 1–46.
doi:10.1145/1346337.1346241

Ryu, S. H., Saint-Paul, R., Benatallah, B., & Casati, F. (2007, January). A framework for managing the evolution
of business protocols in web services. In Proceedings of the fourth Asia-Pacific conference on Comceptual
modeling-Volume 67 (pp. 49-59). Academic Press.

Skogsrud, H., Benatallah, B., Casati, F., & Toumani, F. (2007). Managing impacts of security protocol changes
in service-oriented applications. 29th International Conference on Software Engineering (ICSE’07), 468–477.
doi:10.1109/ICSE.2007.49

Tarnauca, B., Puiu, D., Comnac, V., & Suciu, C. (2012). Modelling a flexible manufacturing system using
reconfigurable finite capacity Petri nets. 2012 13th International Conference on Optimization of Electrical
and Electronic Equipment (OPTIM), 1079–1084. doi:<ALIGNMENT.qj></ALIGNMENT>10.1109/
OPTIM.2012.6231954

Wang, J., Yu, D., Ma, X., Liu, C., Chang, V., & Shen, X. (2020). Online predicting conformance of business
process with recurrent neural networks. Proceedings of the 5th International Conference on Internet of Things,
Big Data and Security, 88–100. doi:10.5220/0009394400880100

http://dx.doi.org/10.1080/0951192X.2015.1130262
http://dx.doi.org/10.1145/1137677.1137694
http://dx.doi.org/10.1007/s11761-016-0204-7
http://dx.doi.org/10.1007/978-3-642-10383-4_44
http://dx.doi.org/10.1007/978-3-540-30476-0_26
http://dx.doi.org/10.1109/TC.2004.66
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/978-3-319-75396-6_11
http://dx.doi.org/10.1007/978-3-540-68679-8_7
http://dx.doi.org/10.1145/1346337.1346241
http://dx.doi.org/10.1109/ICSE.2007.49
http://dx.doi.org/<ALIGNMENT.qj></ALIGNMENT>10.1109/OPTIM.2012.6231954
http://dx.doi.org/<ALIGNMENT.qj></ALIGNMENT>10.1109/OPTIM.2012.6231954
http://dx.doi.org/10.5220/0009394400880100

International Journal of Organizational and Collective Intelligence
Volume 13 • Issue 1

33

Wang, Y., & Wang, Y. (2013). A survey of change management in service-based environments. Service Oriented
Computing and Applications, 7(4), 259–273. doi:10.1007/s11761-013-0128-4

Weber, B., Reichert, M., & Rinderle-Ma, S. (2008). Change patterns and change support features: Enhancing
flexibility in process-aware information systems. Data and Knowledge Engineering, 66, 438–466.

Yellin, D. M., & Strom, R. E. (1997). Protocol specifications and component adaptors. ACM Transactions on
Programming Languages and Systems, 19(2), 292–333. doi:10.1145/244795.244801

Zhao, X., & Liu, C. (2013). Version management for business process schema evolution. Information Systems,
38, 1046–1069.

Ali Khebizi received his PhD in computer science from Badji Mokhtar Annaba University in Algeria. Currently, he
is a senior lecturer and a member of the LabStic Laboratory at 8 May 1945 University of Guelma, Algeria. His
research interests include databases, Web services, protocol modeling, and verification, as well as business
process evolution, integration, and management.

Radja Hamli is a PhD student at University Constantine 2 - Abdelhamid Mehri, Algeria, and she is a researcher at
the MISC Laboratory, at University Constantine 2, Algeria. Her research interests include web services, protocol
modeling and business processes evolution.

Allaoua Chaoui is a full professor of Computer Science at University Constantine 2 - Abdelhamid Mehri, Algeria.
His research interests lie in the areas of services -oriented computing, business processes, and big data.

Raida Elmansouri is a doctor of Computer Science at University Constantine 2 - Abdelhamid Mehri, Algeria. Her
research interests include data analytics, services computing and cognitive computing.

http://dx.doi.org/10.1007/s11761-013-0128-4
http://dx.doi.org/10.1145/244795.244801

